skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Counterfactual Explanation Analytics: Empowering Lay Users to Take Action Against Consequential Automated Decisions
Machine learning is routinely used to automate consequential decisions about users in domains such as finance and healthcare, raising concerns of transparency and recourse for negative outcomes. Existing Explainable AI techniques generate a static counterfactual point explanation which recommends changes to a user's instance to obtain a positive outcome. Unfortunately, these recommendations are often difficult or impossible for users to realistically enact. To overcome this, we present FACET, the first interactive robust explanation system which generates personalized counterfactual region explanations. FACET's expressive explanation analytics empower users to explore and compare multiple counterfactual options and develop a personalized actionable plan for obtaining their desired outcome. Visitors to the demonstration will interact with FACET via a new web dashboard for explanations of a loan approval scenario. In doing so, visitors will experience how lay users can easily leverage powerful explanation analytics through visual interactions and displays without the need for a strong technical background.  more » « less
Award ID(s):
2021871
PAR ID:
10620856
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
VLBD Endowment
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
17
Issue:
12
ISSN:
2150-8097
Page Range / eLocation ID:
4349 to 4352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning systems are deployed in domains such as hiring and healthcare, where undesired classifications can have serious ramifications for the user. Thus, there is a rising demand for explainable AI systems which provide actionable steps for lay users to obtain their desired outcome. To meet this need, we propose FACET, the first explanation analytics system which supports a user in interactively refining counterfactual explanations for decisions made by tree ensembles. As FACET's foundation, we design a novel type of counterfactual explanation called the counterfactual region. Unlike traditional counterfactuals, FACET's regions concisely describe portions of the feature space where the desired outcome is guaranteed, regardless of variations in exact feature values. This property, which we coin explanation robustness, is critical for the practical application of counterfactuals. We develop a rich set of novel explanation analytics queries which empower users to identify personalized counterfactual regions that account for their real-world circumstances. To process these queries, we develop a compact high-dimensional counterfactual region index along with index-aware query processing strategies for near real-time explanation analytics. We evaluate FACET against state-of-the-art explanation techniques on eight public benchmark datasets and demonstrate that FACET generates actionable explanations of similar quality in an order of magnitude less time while providing critical robustness guarantees. Finally, we conduct a preliminary user study which suggests that FACET's regions lead to higher user understanding than traditional counterfactuals. 
    more » « less
  2. Automated decision-making systems are increasingly deployed in domains such as hiring and credit approval where negative outcomes can have substantial ramifications for decision subjects. Thus, recent research has focused on providing explanations that help decision subjects understand the decision system and enable them to take actionable recourse to change their outcome. Popular counterfactual explanation techniques aim to achieve this by describing alterations to an instance that would transform a negative outcome to a positive one. Unfortunately, little user evaluation has been performed to assess which of the many counterfactual approaches best achieve this goal. In this work, we conduct a crowd-sourced between-subjects user study (N = 252) to examine the effects of counterfactual explanation type and presentation on lay decision subjects’ understandings of automated decision systems. We find that the region-based counterfactual type significantly increases objective understanding, subjective understanding, and response confidence as compared to the point-based type. We also find that counterfactual presentation significantly effects response time and moderates the effect of counterfactual type for response confidence, but not understanding. A qualitative analysis reveals how decision subjects interact with different explanation configurations and highlights unmet needs for explanation justification. Our results provide valuable insights and recommendations for the development of counterfactual explanation techniques towards achieving practical actionable recourse and empowering lay users to seek justice and opportunity in automated decision workflows. 
    more » « less
  3. Automated decision-making systems are increasingly deployed in domains such as hiring and credit approval where negative outcomes can have substantial ramifications for decision subjects. Thus, recent research has focused on providing explanations that help decision subjects understand the decision system and enable them to take actionable recourse to change their outcome. Popular counterfactual explanation techniques aim to achieve this by describing alterations to an instance that would transform a negative outcome to a positive one. Unfortunately, little user evaluation has been performed to assess which of the many counterfactual approaches best achieve this goal. In this work, we conduct a crowd-sourced between-subjects user study (N = 252) to examine the effects of counterfactual explanation type and presentation on lay decision subjects’ understandings of automated decision systems. We find that the region-based counterfactual type significantly increases objective understanding, subjective understanding, and response confidence as compared to the point-based type. We also find that counterfactual presentation significantly effects response time and moderates the effect of counterfactual type for response confidence, but not understanding. A qualitative analysis reveals how decision subjects interact with different explanation configurations and highlights unmet needs for explanation justification. Our results provide valuable insights and recommendations for the development of counterfactual explanation techniques towards achieving practical actionable recourse and empowering lay users to seek justice and opportunity in automated decision workflows. 
    more » « less
  4. In this position paper, we propose the use of existing XAI frameworks to design interventions in scenarios where algorithms expose users to problematic content (e.g. anti vaccine videos). Our intervention design includes facts (to indicate algorithmic justification of what happened) accompanied with either fore warnings or counterfactual explanations. While fore warnings indicate potential risks of an action to users, the counterfactual explanations will indicate what actions user should perform to change the algorithmic outcome. We envision the use of such interventions as `decision aids' to users which will help them make informed choices. 
    more » « less
  5. null (Ed.)
    Feature attributions and counterfactual explanations are popular approaches to explain a ML model. The former assigns an importance score to each input feature, while the latter provides input examples with minimal changes to alter the model's predictions. To unify these approaches, we provide an interpretation based on the actual causality framework and present two key results in terms of their use. First, we present a method to generate feature attribution explanations from a set of counterfactual examples. These feature attributions convey how important a feature is to changing the classification outcome of a model, especially on whether a subset of features is necessary and/or sufficient for that change, which attribution-based methods are unable to provide. Second, we show how counterfactual examples can be used to evaluate the goodness of an attribution-based explanation in terms of its necessity and sufficiency. As a result, we highlight the complimentary of these two approaches. Our evaluation on three benchmark datasets --- Adult-Income, LendingClub, and German-Credit --- confirms the complimentary. Feature attribution methods like LIME and SHAP and counterfactual explanation methods like Wachter et al. and DiCE often do not agree on feature importance rankings. In addition, by restricting the features that can be modified for generating counterfactual examples, we find that the top-k features from LIME or SHAP are often neither necessary nor sufficient explanations of a model's prediction. Finally, we present a case study of different explanation methods on a real-world hospital triage problem. 
    more » « less