Tuning hyperparameters is a crucial but arduous part of the machine learning pipeline. Hyperparameter optimization is even more challenging in federated learning, where models are learned over a distributed network of heterogeneous devices; here, the need to keep data on device and perform local training makes it difficult to efficiently train and evaluate configurations. In this work, we investigate the problem of federated hyperparameter tuning. We first identify key challenges and show how standard approaches may be adapted to form baselines for the federated setting. Then, by making a novel connection to the neural architecture search technique of weight-sharing, we introduce a new method, FedEx, to accelerate federated hyperparameter tuning that is applicable to widely-used federated optimization methods such as FedAvg and recent variants. Theoretically, we show that a FedEx variant correctly tunes the on-device learning rate in the setting of online convex optimization across devices. Empirically, we show that FedEx can outperform natural baselines for federated hyperparameter tuning by several percentage points on the Shakespeare, FEMNIST, and CIFAR-10 benchmarks, obtaining higher accuracy using the same training budget.
more »
« less
This content will become publicly available on April 11, 2026
FCOM: A Federated Collaborative Online Monitoring Framework via Representation Learning
Monitoring a large population of dynamic processes with limited resources presents a significant challenge across various industrial sectors. This is due to 1) the inherent disparity between the available monitoring resources and the extensive number of processes to be monitored and 2) the unpredictable and heterogeneous dynamics inherent in the progression of these processes. Online learning approaches, commonly referred to as bandit methods, have demonstrated notable potential in addressing this issue by dynamically allocating resources and effectively balancing the exploitation of high-reward processes and the exploration of uncertain ones. However, most online learning algorithms are designed for 1) a centralized setting that requires data sharing across processes for accurate predictions or 2) a homogeneity assumption that estimates a single global model from decentralized data. To overcome these limitations and enable online learning in a heterogeneous population under a decentralized setting, we propose a federated collaborative online monitoring method. Our approach utilizes representation learning to capture the latent representative models within the population and introduces a novel federated collaborative UCB algorithm to estimate these models from sequentially observed decentralized data. This strategy facilitates informed monitoring of resource allocation. The efficacy of our method is demonstrated through theoretical analysis, simulation studies, and its application to decentralized cognitive degradation monitoring in Alzheimer’s disease.
more »
« less
- Award ID(s):
- 2403401
- PAR ID:
- 10620888
- Publisher / Repository:
- AAAI Press, Washington, DC, USA
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 17
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 17957 to 17965
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Federated learning involves training statistical models over edge devices such as mobile phones such that the training data are kept local. Federated Learning (FL) can serve as an ideal candidate for training spatial temporal models that rely on heterogeneous and potentially massive numbers of participants while preserving the privacy of highly sensitive location data. However, there are unique challenges involved with transitioning existing spatial temporal models to federated learning. In this survey article, we review the existing literature that has proposed FL-based models for predicting human mobility, traffic prediction, community detection, location-based recommendation systems, and other spatial-temporal tasks. We describe the metrics and datasets these works have been using and create a baseline of these approaches in comparison to the centralized settings. Finally, we discuss the challenges of applying spatial-temporal models in a decentralized setting and by highlighting the gaps in the literature we provide a road map and opportunities for the research community.more » « less
-
Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server. Recent advancements in FL use predefined architecture-based learning for all clients. However, given that clients’ data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, we introduce SPIDER, an algorithmic frame- work that aims to Search PersonalIzed neural architecture for feDERated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture- homogeneous global model in a generic FL manner and architecture-heterogeneous local models that are connected to the global model by weight-sharing-based regularization, (2) achieving architecture-heterogeneous local models by a perturbation-based neural architecture search method. Experimental results demonstrate superior prediction performance compared with other state-of-the-art personalization methods. Code is available at https://github.com/ErumMushtaq/SPIDER.git.more » « less
-
Camps-Valls, Gustau; Ruiz, Francisco J.; Valera, Isabel (Ed.)Linear contextual bandit is a popular online learning problem. It has been mostly studied in centralized learning settings. With the surging demand of large-scale decentralized model learning, e.g., federated learning, how to retain regret minimization while reducing communication cost becomes an open challenge. In this paper, we study linear contextual bandit in a federated learning setting. We propose a general framework with asynchronous model update and communication for a collection of homogeneous clients and heterogeneous clients, respectively. Rigorous theoretical analysis is provided about the regret and communication cost under this distributed learning framework; and extensive empirical evaluations demonstrate the effectiveness of our solution.more » « less
-
Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.more » « less
An official website of the United States government
