skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 12, 2025

Title: Detection of the Batrachochytrium dendrobatidis global panzootic lineage in Ecuadorian anurans of the Amazonian lowlands
Considerable attention has been directed to studying the infection dynamics of the fungal pathogenBatrachochytrium dendrobatidis(Bd) affecting amphibians in the high elevations of the Neotropics. However, lowland forests of the same realm remain comparatively understudied in this context. Herein, we attempt to bridge this gap by measuring the prevalence ofBdvia quantitative polymerase chain reaction (qPCR) in several anuran taxa inhabiting the Amazonian lowlands in the northeast of Ecuador. To this end, we sampled 207 anurans from 10 different families, 25 different genera, and 55 distinct host species originally collected in 2008. Taxonomy (at the family level), morphology (i.e. weight and snout-vent length), and life-long aquatic dependency of hosts (i.e. aquatic index) were also compiled to serve as potential predictors ofBdinfection status. Our findings revealed a relatively highBdprevalence of 58%, with 88% of sampled anuran families testing positive for the fungus at varying proportions. Model selection involving fitting and testing several different linear models, including mixed linear models, revealed a significant negative relationship between host weight andBdinfection status (p < 0.01). However, no significant associations were observed between taxonomy, aquatic dependency, snout-vent length, andBdinfections. In addition, we only detected the global panzootic lineage ofBd(Bd-GPL) and not theBd-Asia-2/Bd-Brazil lineage via qPCR single nucleotide polymorphism (SNP) genotyping. Our findings contribute to the understanding ofBddynamics in the Neotropical lowlands and emphasize the need for future research on the ecological factors influencingBdin the Amazon and their implications for amphibian conservation.  more » « less
Award ID(s):
2041629
PAR ID:
10620925
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Diseases of Aquatic Organisms
Date Published:
Journal Name:
Diseases of Aquatic Organisms
Volume:
160
ISSN:
0177-5103
Page Range / eLocation ID:
115 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The amphibian chytrid fungusBatrachochytrium dendrobatidis(Bd) is a cosmopolitan pathogen with numerous distinct lineages. The global panzootic lineage (Bd-GPL) is the most widespread and virulent lineage and is responsible for many recorded amphibian declines. Mapping the extent ofBd-GPL and other more established lineages is important for predicting disease dynamics in amphibian communities. Ecuador is the most biodiverse country per unit area for amphibian taxa and, thus, a priority for studies on genotypic diversity ofBd. In this study, we tested skin swab samples collected from 464 individual amphibians across coastal, Andean montane, and Amazonian forests, for the presence of twoBdlineages known to be present in South America: the globally-distributedBd-GPL and the Brazilian-endemicBd-Asia2/Brazil lineage. By using a discriminatory qPCR SNP assay, we found widespread prevalence ofBd-GPL in Ecuador in diverse host taxa. Genotyping efficiency was 36% in this study, meaning that one in every three swabs that tested positive forBdin infection assays were successfully genotyped. Through this study, we provide further support for the presence of a singleBdlineage in this neotropical biodiversity hotspot. 
    more » « less
  2. Abstract Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungusBatrachochytrium dendrobatidis(Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host–pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host–pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries. 
    more » « less
  3. Reguera, Gemma (Ed.)
    ABSTRACT Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro ), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin. 
    more » « less
  4. Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species. 
    more » « less
  5. Abstract BackgroundHost microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbeBatrachochytrium dendrobatidis(Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. ResultsIntensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence inIschnocnema henseliibut no Bd detections inHaddadus binotatus.Haddadus binotatuscarried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. ConclusionsOur findings suggest that community structure of the bacteriome might drive Bd resistance inH. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses. 
    more » « less