Forward osmosis (FO) has primarily been explored for applications in water desalination. While FO has also shown potential in concentrating dairy products, little to no attention has been paid to its potential in concentrating biotherapeutics, particularly to the very high concentrations needed for many monoclonal antibody products that are delivered by subcutaneous injection. This study demonstrates the feasibility of using FO as an alternative to ultrafiltration (UF) to achieve highly concentrated protein formulations using human Immunoglobin G (hIgG) as a model protein. The permeate flux in FO, using 1 M NaCl as the draw solution, decreased with increasing hIgG concentration due primarily to concentration polarization effects that are strongly influenced by the increase in feed viscosity for the concentrated hIgG solution. The importance of the hIgG viscosity on the FO performance was demonstrated by performing experiments with concentrated polyethylene glycol solutions and through mathematical modeling that accounts for the effects of both external and internal concentration polarization on FO performance. Batch concentration experiments with FO achieved final hIgG concentrations greater than 290 g/L compared to a maximum achievable concentration in UF of approximately 150 g/L. These results clearly demonstrate the potential of using FO, with high osmotic pressure draw solutions, to achieve highly concentrated formulations of therapeutic proteins that are beyond the capability of current UF processes.
more »
« less
This content will become publicly available on July 29, 2026
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse.
more »
« less
- PAR ID:
- 10621085
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Separations
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2297-8739
- Page Range / eLocation ID:
- 199
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic particle imaging (MPI) is a tracer-based tomographic imaging technique utilized in applications such as lung perfusion imaging, cancer diagnosis, stem cell tracking, etc. The goal of translating MPI to clinical use has prompted studies on further improving the spatial-temporal resolutions of MPI through various methods, including image reconstruction algorithm, scanning trajectory design, magnetic field profile design, and tracer design. Iron oxide magnetic nanoparticles (MNPs) are favored for MPI and magnetic resonance imaging (MRI) over other materials due to their high biocompatibility, low cost, and ease of preparation and surface modification. For core–shell MNPs, the tracers’ magnetic core size and non-magnetic coating layer characteristics can significantly affect MPI signals through dynamic magnetization relaxations. Most works to date have assumed an ensemble of MNP tracers with identical sizes, ignoring that artificially synthesized MNPs typically follow a log-normal size distribution, which can deviate theoretical results from experimental data. In this work, we first characterize the size distributions of four commercially available iron oxide MNP products and then model the collective magnetic responses of these MNPs for MPI applications. For an ensemble of MNP tracers with size standard deviations ofσ, we applied a stochastic Langevin model to study the effect of size distribution on MPI imaging performance. Under an alternating magnetic field (AMF), i.e., the excitation field in MPI, we collected the time domain dynamic magnetizations (M-t curves), magnetization-field hysteresis loops (M-H curves), point-spread functions (PSFs), and higher harmonics from these MNP tracers. The intrinsic MPI spatial resolution, which is related to the full width at half maximum (FWHM) of the PSF profile, along with the higher harmonics, serve as metrics to provide insights into how the size distribution of MNP tracers affects MPI performance.more » « less
-
To address some challenges of food security and sustainability of the poultry processing industry, a sequential membrane process of ultrafiltration (UF), forward osmosis (FO), and reverse osmosis (RO) is proposed to treat semi-processed poultry slaughterhouse wastewater (PSWW) and water recovery. The pretreatment of PSWW with UF removed 36.7% of chemical oxygen demand (COD), 38.9% of total phosphorous (TP), 24.7% of total solids (TS), 14.5% of total volatile solids (TVS), 27.3% of total fixed solids (TFS), and 12.1% of total nitrogen (TN). Then, the PSWW was treated with FO membrane in FO mode, pressure retarded osmosis (PRO) mode, and L-DOPA coated membrane in the PRO mode. The FO mode was optimal for PSWW treatment by achieving the highest average flux of 10.4 ± 0.2 L/m2-h and the highest pollutant removal efficiency; 100% of COD, 100% of TP, 90.5% of TS, 85.3% of TVS, 92.1% of TFS, and 37.2% of TN. The performance of the FO membrane was entirely restored by flushing the membrane with 0.1% sodium dodecyl sulfate solution. RO significantly removed COD, TS, TVS, TFS, and TP. However, TN was reduced by only 62% because of the high ammonia concentration present in the draw solution. Overall, the sequential membrane process (UF-FO-RO) showed excellent performance by providing high rejection efficiency for pollutant removal and water recovery.more » « less
-
Slag and Al/Mg oxide modified Douglas fir biochar (AMOB) were compared for their phosphate adsorbing abilities for use individually or in combination for simulated agriculture run-off remediation in wetlands. Aqueous batch and column sorption experiments were performed for both low-cost materials. AMOB was prepared in bulk using a novel green method. Material analyses included XRD, elemental analysis, SEM, EDX, and BET. Biochar and slag have different phosphate removal mechanisms. In short residence times (≤2 h), adsorption phenomena dominate for both adsorbents. Surface area likely plays a role in adsorption performance; slag was measured to be 4.1 m2/g while biochar’s surface area was 364.1 m2/g. In longer residence times (>2 h), the slow leaching of metals (Ca, Al, and Mg) from slag continue to remove phosphate through the precipitation of metal phosphates. In 24 h, slag removed more free phosphate from the solution than AMOB. Preliminary fixed bed column adsorption of slag or AMOB alone and in tandem was performed adopting a scaled-up model that can be used to remediate agricultural runoff with high phosphate content. Additionally, a desorption study was performed to analyze the efficiency of material regeneration. While AMOB does not release any adsorbed phosphates, slag slowly releases 5.7% adsorbed phosphate over seven days.more » « less
-
Abstract Microplastics and nanoplastics (collectively, MNPs) are increasingly entering soils, with potential adverse impacts to agriculture and groundwater. Environmental detection, characterization, and quantification of MNPs is difficult and subject to artifacts, often requiring labor-intensive separation from environmental matrices. These analytical challenges make it difficult to conduct experiments investigating specific MNP characteristics influencing their transport and fate, particularly when examining multiple plastic types at low concentrations. By synthesizing a suite of metal-tagged polymers, which are cryomilled to create polydisperse fragmented particle suspensions, single particle ICP-MS (spICP-MS) can be used to quantify MNP particle size and concentration in controlled fate and transport studies. Use of unique metal-polymer pairs enables accurate, simultaneous analysis of multiple MNP types which can be used to track total particle transport and retention within a variety of environmental matrices. This was demonstrated using saturated sand column transport experiments to quantify the movement of two plastics having different properties: tin-tagged polystyrene (Sn-PS) and tantalum-tagged polyvinylpyrrolidone (Ta-PVP). The behavior of these polydisperse, fragmented MNPs was compared to that of fluorescent, carboxylated monodisperse PS spherical microspheres (Fl-PS). Mobility of all MNP types increased with decreasing particle size, and hydrophilic Ta-PVP particles migrated more effectively than the hydrophobic Sn-PS particles. Furthermore, the addition of humic acid (HA) to the carrier solution increased the colloidal stability of both metal-tagged MNP suspensions, resulting in much greater elution from the column than in HA-free deionized water or moderately- hard water (ionic strength = 5mM). This combination of particle synthesis and spICP-MS analysis provides insights into the transport of MNP having physical properties that are representative of environmental MNPs and opens up a broad range of applications for study of MNP environmental fate and transport.more » « less
An official website of the United States government
