skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: iNaturalist and Structured Mammal Surveys Reflect Similar Species Richness but Capture Different Species Pools Across the United States
ABSTRACT Crowd‐sourced biodiversity data, such as those housed in the iNaturalist platform, are increasingly used to monitor species distributions. Such data represent unstructured biodiversity surveys that are generally comprised of incidental observations and do not report variation in sampling effort. These discrepancies may yield data that is incongruent with data from structured surveys. To assess whether mammalian iNaturalist data are reflective of data from traditional structured surveys, we calculated and compared measures of mammalian species richness and species pool similarity using data from unstructured surveys (i.e., iNaturalist) and data from structured camera trap surveys and bat acoustic surveys. We found that data from structured and unstructured surveys generally document similar mammalian species richness, but the two survey types document different species pools. Human population density and proxies for species pool breadth were most strongly associated with discrepancies in datasets, with data being most similar in areas of high human population density and lower species richness. Our analyses revealed that dataset similarity varied across geography and community metric for most taxa, but that structured and unstructured surveys produced consistently unreconcilable datasets for bats. These findings suggest that unstructured datasets like iNaturalist may offer reliable data for some taxa and geographies, but that these data are not universally applicable to all research scenarios.  more » « less
Award ID(s):
2211764
PAR ID:
10621184
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Data availability limits phenological research at broad temporal and spatial extents. Butterflies are among the few taxa with broad-scale occurrence data, from both incidental reports and formal surveys. Incidental reports have biases that are challenging to address, but structured surveys are often limited seasonally and may not span full flight phenologies. Thus, how these data source compare in phenological analyses is unclear. We modeled butterfly phenology in relation to traits and climate using parallel analyses of incidental and survey data, to explore their shared utility and potential for analytical integration. One workflow aggregated “Pollard” surveys, where sites are visited multiple times per year; the other aggregated incidental data from online portals: iNaturalist and eButterfly. For 40 species, we estimated early (10%) and mid (50%) flight period metrics, and compared the spatiotemporal patterns and drivers of phenology across species and between datasets. For both datasets, inter-annual variability was best explained by temperature, and seasonal emergence was earlier for resident species overwintering at more advanced stages. Other traits related to habitat, feeding, dispersal, and voltinism had mixed or no impacts. Our results suggest that data integration can improve phenological research, and leveraging traits may predict phenology in poorly studied species. 
    more » « less
  2. Abstract We investigated the effects of body mass, geographic range size, the within-range richness of host assemblages (diversity field) and the habitat breadth of small mammalian hosts from 6 biogeographic realms on the species richness of their flea and gamasid mite faunas. We also tested whether the probability of between-host ectoparasite sharing is related to host phylogenetic relatedness, trait similarity or geographic distance/environmental dissimilarity between their ranges. We asked whether the effects of host-associated determinants of ectoparasite richness and the probability of ectoparasite sharing differ between (1) biogeographic realms and (2) fleas and mites. Whenever significant effects of host body mass on ectoparasite richness were found, they were negative, whereas the significant effects of geographic range size, diversity field and habitat breadth were positive. The occurrence of each determinant’s effects on ectoparasite species richness differed (1) within fleas or mites between realms and (2) between fleas and mites within a realm. In all realms, the probability of a flea or a mite species being shared between hosts decreased with a decrease in the hosts’ phylogenetic relatedness, trait similarity, geographic distance between ranges or environmental similarity. The probabilities of an ectoparasite species being shared between hosts were most strongly related to the hosts’ trait similarity and were least related to the environmental similarity. We conclude that caution is needed in making judgements about the generality of macroecological patterns related to parasites based on the investigations of these patterns in limited numbers of localities and when pooling data on various taxa. 
    more » « less
  3. Expeditionary field work still remains the most fundamental tool to discover novel species and repetitive sampling in high diversity portions of the Indo-Pacific tropics continues to provide large numbers of previously undocumented taxa. Multidisciplinary collaborative teams and large expeditions are an immense source of novel biodiversity. Micro-scale temporal changes in diverse ecosystems provide a catalyst for new species discovery, as well as insights into the discovery of patterns of trophic and symbiotic divergence. Additionally, phylogenetic analyses of large samples of diverse taxa across geographical gradients have increasingly detected cryptic and pseudo-cryptic species complexes that have dramatically altered our view of species richness. Aposematic and extreme camouflaged colour patterns within the context of fish predatory behaviour provides an evolutionary framework for divergence and convergence of colour patterns. Similarly, recent studies of temperate nudibranch assemblages in temperate waters in Europe, southern Africa and the Pacific coast of North America also demonstrate previously undetected diversity and the presence of colour patterns that likely reflect similarity derived from both common ancestry and convergence. Combining these approaches has documented astonishingly high levels of previously undetected diversity, has huge implications to our knowledge of global biodiversity with a likely 3-5x increase in global species richness, and has developed more appropriate regenerative conservation strategies. 
    more » « less
  4. Abstract Increases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategistsadapted to unstable or frequently disturbed habitats,periodic strategistsadapted to habitats subject to predictable large‐scale disturbances, andequilibrium strategistsadapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clamCorbicula flumineacontributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales. 
    more » « less
  5. Loreau, Michel (Ed.)
    Tropical forests hold most of Earth’s biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats. 
    more » « less