skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 27, 2026

Title: Geographic variation in the determinants of ectoparasite faunas’ species richness: fleas and gamasid mites parasitic on small mammals from 6 biogeographic realms
Abstract We investigated the effects of body mass, geographic range size, the within-range richness of host assemblages (diversity field) and the habitat breadth of small mammalian hosts from 6 biogeographic realms on the species richness of their flea and gamasid mite faunas. We also tested whether the probability of between-host ectoparasite sharing is related to host phylogenetic relatedness, trait similarity or geographic distance/environmental dissimilarity between their ranges. We asked whether the effects of host-associated determinants of ectoparasite richness and the probability of ectoparasite sharing differ between (1) biogeographic realms and (2) fleas and mites. Whenever significant effects of host body mass on ectoparasite richness were found, they were negative, whereas the significant effects of geographic range size, diversity field and habitat breadth were positive. The occurrence of each determinant’s effects on ectoparasite species richness differed (1) within fleas or mites between realms and (2) between fleas and mites within a realm. In all realms, the probability of a flea or a mite species being shared between hosts decreased with a decrease in the hosts’ phylogenetic relatedness, trait similarity, geographic distance between ranges or environmental similarity. The probabilities of an ectoparasite species being shared between hosts were most strongly related to the hosts’ trait similarity and were least related to the environmental similarity. We conclude that caution is needed in making judgements about the generality of macroecological patterns related to parasites based on the investigations of these patterns in limited numbers of localities and when pooling data on various taxa.  more » « less
Award ID(s):
2414418
PAR ID:
10630450
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Parasitology
ISSN:
0031-1820
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross‐species spillover transmission. Using a rodent–ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent–ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high‐consequence zoonotic pathogen with documented animal‐to‐animal, animal‐to‐human, and human‐to‐human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus. 
    more » « less
  2. Abstract ContextHabitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown. ObjectivesWe studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment. MethodsWe sampled mite communities from the leaves ofQuercus nigra(a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces. ResultsHabitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance. ConclusionOur results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects. 
    more » « less
  3. The geographical ranges of many mammals and their associated parasites are dynamic. Comprehensive documentation of these communities over time provides a foundation for interpreting how changing environmental conditions, driven by accelerating climate change, other anthropogenic disturbances, and natural events, may influence host-parasite interactions. Fleas (Order Siphonaptera) are obligate, hematophagous parasites of birds and mammals with medical interest because of their role in transmitting pathogens. From 2016 to 2019, we sampled the small mammal and associated flea communities in El Malpais National Conservation Area (El Malpais) in Cibola County, New Mexico. Among 898 mammalian specimens, 925 fleas representing 29 species were collected from 18 host species. Pleochaetis exilis was the most abundant flea species, composing 27% of the total fleas collected, whereas Aetheca wagneri was the most prevalent flea species, parasitizing 8% of the community sampled. Across a total of 284 hosts recorded with fleas, A. wagneri, Malaraeus eremicus, and Peromyscopsylla hesperomys adelpha parasitized the most host species (n = 6 each). Onychomys leucogaster (Wied-Neuwied, 1841), the northern grasshopper mouse, a rodent highly implicated in plague dynamics, was host for the highest number of flea species (n = 15), followed by Peromyscus truei (Shufeldt, 1885) (n = 10). Our aims are to (a) describe the flea-mammal assemblage of a central New Mexico site, creating a baseline for diversity against which changing patterns of association can be assessed over time; (b) identify previously unrecognized host associations; and (c) examine infestation parameters, including the relationships of flea prevalence and mean abundance to host sex, host abundance, and seasonality. As such, our study exemplifies the Documentation and Assessment phases of the DAMA protocol (Document, Assess, Monitor, Act), a central component of exploring distribution and diversity of complex pathogen-host communities across space and time that are essential to a proactive understanding of emerging disease. 
    more » « less
  4. ABSTRACT Host-parasite relationships between Western Burrowing Owls (Athene cunicularia hypugaea) and the fleas (Pulex irritans, Siphonaptera:Pulicidae) they harbor were studied to understand the extent to which migratory Burrowing Owls translocated fleas from wintering grounds to breeding grounds. This has implications for host-parasite relationships in Burrowing Owls and also potentially for the dynamics of plague, as Burrowing Owl distributions overlap plague foci, owls inhabit fossorial mammal colonies where epizootic outbreaks of plague occur, and owls may harbor species of flea that are competent plague vectors. We used hydrogen stable isotope analysis to help elucidate geographic origins of fleas collected from adults and nestlings in 2 migratory populations of Burrowing Owls in Idaho and Oregon, USA. For adults, we posited that bird-mediated dispersal would impart flea isotopic compositions representative of southern latitudes and be similar to owl toenail tissue recently grown on wintering grounds, but they would differ from contour feathers presumably grown on breeding grounds the previous year. We assumed nestling feathers and toenails would have isotopic compositions representative of the breeding grounds. We analyzed contour feathers and toenails from adults collected shortly after they arrived in breeding grounds following spring migration and from nestlings later in the breeding season, to which we compared isotopic compositions in fleas collected from individuals of both age classes. Fleas on nestlings in both populations had isotopic compositions that did not differ from nestling feathers and toenails, suggesting that nestling fleas had breeding ground origins. Fleas on adults in one population (Oregon) had breeding ground isotopic signatures, as flea compositions did not differ from nestling feathers or toenails. Adult owls in Idaho had fleas that similarly did not express a wintering ground signature, but they were enriched in the heavy isotope (deuterium) relative to nestling feathers and toenails. Therefore, we discuss the possibility that adult owls in Idaho acquired fleas at migratory stopover sites. While the latter indicates that Burrowing Owls have the potential to disperse fleas, there was no evidence of continent-wide movement of fleas by owls from wintering grounds to breeding grounds. 
    more » « less
  5. ABSTRACT Most plant communities worldwide include exotic plants, which did not evolve with local organisms. The central goal of this study is to test if native organisms expanding their interactions to novel hosts are usually generalists or specialists. Here we studied new associations between hummingbirds, flower mites andMusa velutina(Musaceae), an exotic plant native to northeast India currently invading lowland forests in Costa Rica. Hummingbirds are pollinators, but flower mites feed on nectar without contributing to pollen transfer. Flower mites hitch rides on hummingbird beaks to colonize new flowers. To determine the original diet breadth of hummingbird and flower mite species, we assembled hummingbird and flower mite interactions at La Selva Biological Station. We identified four hummingbird species visitingMusa velutina. DNA barcode analyses identified only one species of flower mite colonizing flowers ofM. velutina. All new associations withM. velutinainvolved generalist hummingbird and flower mite species.Musa velutinadisplays both male and female flowers. Although flowers of both sexes were equally visited by hummingbirds, mites were 15 times more abundant in male than in female flowers. We hypothesize that this is the result of constant immigration coupled with mite population growth. Only half of the mites hitching rides on hummingbird beaks emigrate to newly opened flowers. Our results show thatM. velutinaintegration to a plant community occurs mainly by establishing interactions with generalists. 
    more » « less