It is now possible to deploy swarms of drones with populations in the thousands. There is growing interest in using such swarms for defense, and it has been natural to program them with bio-mimetic motion models such as flocking or swarming. However, these motion models evolved to survive against predators, not enemies with modern firearms. This paper presents experimental data that compares the survivability of several motion models for large numbers of drones. This project tests drone swarms in Virtual Reality (VR), because it is prohibitively expensive, technically complex, and potentially dangerous to fly a large swarm of drones in a testing environment. We model the behavior of drone swarms flying along parametric paths in both tight and scattered formations. We add random motion to the general motion plan to confound path prediction and targeting. We describe an implementation of these flight paths as game levels in a VR environment. We then allow players to shoot at the drones and evaluate the difference between flocking and swarming behavior on drone survivability.
more »
« less
This content will become publicly available on June 23, 2026
Detection and Tracking of Drone Swarms using LiDAR
This paper introduces LiSWARM, a low-cost LiDAR system to detect and track individual drones in a large swarm. LiSWARM provides robust and precise localization and recognition of drones in 3D space, which is not possible with state-of-the-art drone tracking systems that rely on radio-frequency (RF), acoustic, or RGB image signatures. It includes (1) an efficient data processing pipeline to process the point clouds, (2) robust priority-aware clustering algorithms to isolate swarm data from the background, (3) a reliable neural network-based algorithm to recognize the drones, and (4) a technique to track the trajectory of every drone in the swarm. We develop the LiSWARM prototype and validate it through both in-lab and field experiments. Notably, we measure its performance during two drone light shows involving 150 and 500 drones and confirm that the system achieves up to 98% accuracy in recognizing drones and reliably tracking drone trajectories. To evaluate the scalability of LiSWARM, we conduct a thorough analysis to benchmark the system’s performance with a swarm consisting of 15,000 drones. The results demonstrate the potential to leverage LiSWARM for other applications, such as battlefield operations, errant drone detection, and securing sensitive areas such as airports and prisons.
more »
« less
- Award ID(s):
- 2403528
- PAR ID:
- 10621275
- Publisher / Repository:
- ACM MobiSys 2025
- Date Published:
- ISSN:
- 10.1145/3711875.3729156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Drones have become invaluable tools for studying animal behaviour in the wild, enabling researchers to collect aerial video data of group‐living animals. However, manually piloting drones to track animal groups consistently is challenging due to complex factors such as terrain, vegetation, group spread and movement patterns. The variability in manual piloting can result in unusable data for downstream behavioural analysis, making it difficult to collect standardized datasets for studying collective animal behaviour.To address these challenges, we present WildWing, a complete hardware and software open‐source unmanned aerial system (UAS) for autonomously collecting behavioural video data of group‐living animals. The system's main goal is to automate and standardize the collection of high‐quality aerial footage suitable for computer vision‐based behaviour analysis. We provide a novel navigation policy to autonomously track animal groups while maintaining optimal camera angles and distances for behavioural analysis, reducing the inconsistencies inherent in manual piloting.The complete WildWing system costs only $650 and incorporates drone hardware with custom software that integrates ecological knowledge into autonomous navigation decisions. The system produces 4 K resolution video at 30 fps while automatically maintaining appropriate distances and angles for behaviour analysis. We validate the system through field deployments tracking groups of Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation centre, demonstrating its ability to collect usable behavioural data consistently.By automating the data collection process, WildWing helps ensure consistent, high‐quality video data suitable for computer vision analysis of animal behaviour. This standardization is crucial for developing robust automated behaviour recognition systems to help researchers study and monitor wildlife populations at scale. The open‐source nature of WildWing makes autonomous behavioural data collection more accessible to researchers, enabling wider application of drone‐based behavioural monitoring in conservation and ecological research.more » « less
-
This paper investigates the scheduling problem related to engaging a swarm of attacking drones with a single defensive turret. The defending turret must turn, with a limited slew rate, and remain facing a drone for a dwell time to eliminate it. The turret must eliminate all the drones in the swarm before any drone reaches the turret. In 2D, this is an example of a Traveling Salesman Problem with Time Windows (TSPTW) where the turret must visit each target during the window. In 2D, the targets and turret are restricted to a plane and the turret rotates with one degree of freedom. In 3D, the turret can pan and tilt, while the drones attempt to reach a safe zone anywhere along the vertical axis above the turret. This 3D movement makes the problem more challenging, since the azimuth angles of the turret to the drones vary as a function of time. This paper investigates the theoretical optimal solution for simple swarm configurations. It compares heuristic approaches for the path scheduling problem in 2D and 3D using a simulation of the swarm behavior. It provides results for an improved heuristic approach, the Threat-Aware Nearest Neighbor.more » « less
-
This study presents an advanced multi-view drone swarm imaging system for the three-dimensional characterization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones, each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system's ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more effective fire control decisions and mitigating wildfire risks.more » « less
-
null (Ed.)There may be situations where a direct line of sight between a transmitter and a receiver is blocked. In such a situation it may be possible to transmit a signal upward from a transmitter to a swarm of drones, each of which carries a scattering object. By positioning each drone properly, the scattered signal from the drones can add coherently in a given direction, forming a beam in that direction. The altitude of each drone is used as a degree of freedom in order to change the phase of the signal scattered by the drone. For a given set of horizontal drone positions, the drone altitudes can be determined to produce a main beam in a given direction. The drone positions can also be optimized to focus a beam in a given direction while producing pattern nulls in other prescribed directions with very small sidelobes.more » « less
An official website of the United States government
