This paper introduces LiSWARM, a low-cost LiDAR system to detect and track individual drones in a large swarm. LiSWARM provides robust and precise localization and recognition of drones in 3D space, which is not possible with state-of-the-art drone tracking systems that rely on radio-frequency (RF), acoustic, or RGB image signatures. It includes (1) an efficient data processing pipeline to process the point clouds, (2) robust priority-aware clustering algorithms to isolate swarm data from the background, (3) a reliable neural network-based algorithm to recognize the drones, and (4) a technique to track the trajectory of every drone in the swarm. We develop the LiSWARM prototype and validate it through both in-lab and field experiments. Notably, we measure its performance during two drone light shows involving 150 and 500 drones and confirm that the system achieves up to 98% accuracy in recognizing drones and reliably tracking drone trajectories. To evaluate the scalability of LiSWARM, we conduct a thorough analysis to benchmark the system’s performance with a swarm consisting of 15,000 drones. The results demonstrate the potential to leverage LiSWARM for other applications, such as battlefield operations, errant drone detection, and securing sensitive areas such as airports and prisons. 
                        more » 
                        « less   
                    This content will become publicly available on April 29, 2026
                            
                            3D characterization of smoke plume dispersion using multi-view drone swarm
                        
                    
    
            This study presents an advanced multi-view drone swarm imaging system for the three-dimensional characterization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones, each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system's ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more effective fire control decisions and mitigating wildfire risks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2018658
- PAR ID:
- 10613759
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Science of the Total Environment
- ISSN:
- 0048-9697
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Forecasting fire growth, plume rise and smoke impacts on air quality remains a challenging task. Wildland fires dynamically interact with the atmosphere, which can impact fire behavior, plume rises, and smoke dispersion. For understory fires, the fire propagation is driven by winds attenuated by the forest canopy. However, most numerical weather prediction models providing meteorological forcing for fire models are unable to resolve canopy winds. In this study, an improved canopy model parameterization was implemented within a coupled fire-atmosphere model (WRF-SFIRE) to simulate a prescribed burn within a forested plot. Simulations with and without a canopy wind model were generated to determine the sensitivity of fire growth, plume rise, and smoke dispersion to canopy effects on near-surface wind flow. Results presented here found strong linkages between the simulated fire rate of spread, heat release and smoke plume evolution. The standard WRF-SFIRE configuration, which uses a logarithmic interpolation to estimate sub-canopy winds, overestimated wind speeds (by a factor 2), fire growth rates and plume rise heights. WRF-SFIRE simulations that implemented a canopy model based on a non-dimensional wind profile, saw significant improvements in sub-canopy winds, fire growth rates and smoke dispersion when evaluated with observations.more » « less
- 
            In this paper, we propose a drone-based wildfire monitoring system for remote and hard-to-reach areas. This system utilizes autonomous unmanned aerial vehicles (UAVs) with the main advantage of providing on-demand monitoring service faster than the current approaches of using satellite images, manned aircraft and remotely controlled drones. Furthermore, using autonomous drones facilitates minimizing human intervention in risky wildfire zones. In particular, to develop a fully autonomous system, we propose a distributed leader-follower coalition formation model to cluster a set of drones into multiple coalitions that collectively cover the designated monitoring field. The coalition leader is a drone that employs observer drones potentially with different sensing and imaging capabilities to hover in circular paths and collect imagery information from the impacted areas. The objectives of the proposed system include: i) to cover the entire fire zone with a minimum number of drones, and ii) to minimize the energy consumption and latency of the available drones to fly to the fire zone. Simulation results confirm that the performance of the proposed system- without the need for inter-coalition communications- approaches that of a centrally-optimized system.more » « less
- 
            This paper investigates the scheduling problem related to engaging a swarm of attacking drones with a single defensive turret. The defending turret must turn, with a limited slew rate, and remain facing a drone for a dwell time to eliminate it. The turret must eliminate all the drones in the swarm before any drone reaches the turret. In 2D, this is an example of a Traveling Salesman Problem with Time Windows (TSPTW) where the turret must visit each target during the window. In 2D, the targets and turret are restricted to a plane and the turret rotates with one degree of freedom. In 3D, the turret can pan and tilt, while the drones attempt to reach a safe zone anywhere along the vertical axis above the turret. This 3D movement makes the problem more challenging, since the azimuth angles of the turret to the drones vary as a function of time. This paper investigates the theoretical optimal solution for simple swarm configurations. It compares heuristic approaches for the path scheduling problem in 2D and 3D using a simulation of the swarm behavior. It provides results for an improved heuristic approach, the Threat-Aware Nearest Neighbor.more » « less
- 
            The objective of this study was to assess feasibility of integrating a coupled fire-atmosphere model within an air-quality forecast system to create a multiscale air-quality modeling framework designed to simulate wildfire smoke. For this study, a coupled fire-atmosphere model, WRF-SFIRE, was integrated, one-way, with the AIRPACT air-quality modeling system. WRF-SFIRE resolved local meteorology, fire growth, the fire plume rise, and smoke dispersion, and provided AIRPACT with fire inputs. The WRF-SFIRE-forecasted fire area and the explicitly resolved vertical smoke distribution replaced the parameterized BlueSky fire inputs used by AIRPACT. The WRF-SFIRE/AIRPACT integrated framework was successfully tested for two separate wildfire events (2015 Cougar Creek and 2016 Pioneer fires). The execution time for the WRF-SFIRE simulations was <3 h for a 48 h-long forecast, suggesting that integrating coupled fire-atmosphere simulations within the daily AIRPACT cycle is feasible. While the WRF-SFIRE forecasts realistically captured fire growth 2 days in advance, the largest improvements in the air quality simulations were associated with the wildfire plume rise. WRF-SFIRE-estimated plume tops were within 300-m of satellite-estimated plume top heights for both case studies analyzed in this study. Air quality simulations produced by AIRPACT with and without WRF-SFIRE inputs were evaluated with nearby PM 2 . 5 measurement sites to assess the performance of our multiscale smoke modeling framework. The largest improvements when coupling WRF-SFIRE with AIRPACT were observed for the Cougar Creek Fire where model errors were reduced by ∼50%. For the second case (Pioneer fire), the most notable change with WRF-SFIRE coupling was that the probability of detection increased from 16 to 52%.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
