We report on our initial results from a systematic effort to implement electron-withdrawing protecting groups and Lewis basic solvents/additives as an approach to 1,2- cis (α)-selective O -glucosylation. 1,2- cis -Selective O -glucosylations are reported with thioglucosides and glucosyl trichloroacetimidates and a range of acceptors. A correlation between electron-withdrawing effects and 1,2- cis selectivity has been established. This phenomenon may prove to be broadly applicable in the area of chemical O -glycosylation.
more »
« less
This content will become publicly available on November 21, 2025
On the relevance of glycosyl oxonium ions to 1,2- cis -selective O -glycosylation in ether solvents
Since no later than the 1970s, organic chemists have speculated on the role of glycosyl oxonium ions in chemical O-glycosylation. Such species result from the attack of ethers on glycosyl oxocarbenium ions and are invoked to explain 1,2-cis-selectivity in ether solvents. However, a systematic study to probe this phenomenon appears to be lacking in the chemical literature. Herein, we study the effects of solvent, counteranion, protecting group electron-withdrawing effects, and acceptor on O-glycosylation stereoselectivity with D-glucosyl trichloroacetimidate donors. While many of these transformations proceed with 1,2- cis-selectivity, our results suggest that glycosyl oxonium ions play minimal, if any, role in O-glycosylation.
more »
« less
- Award ID(s):
- 2101153
- PAR ID:
- 10621276
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- Journal of Carbohydrate Chemistry
- Volume:
- 43
- Issue:
- 7-9
- ISSN:
- 0732-8303
- Page Range / eLocation ID:
- 302 to 322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)While strategies involving a 2e − transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or S N side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2- cis -thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp 2 and sp 3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.more » « less
-
Abstract Herein, we present an approach for catalytic orthogonal glycosylation utilizing earth‐abundant copper carbenes. This method operates under mild conditions and employs readily accessible starting materials, including benchtop stable enynal‐derived glycosyl donors, synthesized at the gram scale. The reaction accommodates a variety of glycosyl acceptors, including primary, secondary, and tertiary alcohols. The enynal‐derived copper carbenes exhibit remarkable reactivity and selectivity, allowing for the formation of glycosidic linkages with different protecting groups and stereochemical patterns. This approach provides access to both 1,2‐cis‐ and ‐trans‐glycosidic linkages. The product stereoselectivity is independent of the anomeric configuration of the glycosyl donor, which also has orthogonal reactivity to widely used alkynes and thioglycoside donors. An iterative synthesis of a trisaccharide further demonstrates the application of this orthogonal reactivity.more » « less
-
The lack of catalytic stereoselective approaches for producing 1,2-cis S-furanosides emphasizes the critical need for further research in this area. Herein, we present a stereoselective S-furanosylation method, utilizing a 4,7-dipiperidine-substituted phenanthroline catalyst. This developed protocol fills a gap in the field, enabling the coupling of cysteine residues and thiols with furanosyl bromide electrophiles. The process allows for stereoselective access to 1,2-cis S-furanosides. Through computational and experimental investigations, thiol is found to be less reactive than alcohol but exhibits greater stereoselectivity. The 1,2-cis stereoselectivity of O-products depends on the nature of the electrophile, while S-products are obtained with excellent 1,2-cis stereoselectivity, irrespective of the furanose structure. The displaced bromide ion from the glycosyl electrophile influences the reaction’s reactivity and stereoselectivity. Alcohol-OH forms a stronger hydrogen bond with bromide ion than thiol-SH, contributing to the difference in their reactivity. The energy difference between forming S-furanoside and O-furanoside transition states is 3.7 kcal/mol, supporting the increased reactivity of alcohol over thiol. The difference in transition state energies between the major and minor S-product is greater than that for the major and minor O-product. This is consistent with experimental data showing how thiol is more stereoselective than alcohol. The catalyst and reaction conditions utilized for the generation of 1,2-cis O-furanosides in our prior studies are found to be unsuitable for the synthesis of 1,2-cis S-furanosides. In the present study, a highly reactive phenanthroline catalyst and specific reaction conditions have been developed to achieve stereoselective S-linked product formation.more » « less
-
Traditional glycosylation methods using thioglycosides often require harsh conditions or expensive metal catalysts. This study presents a more sustainable alternative by employing copper, an earth-abundant catalyst. We developed diazo-based thioglycoside donors that, through copper catalysis, undergo intramolecular activation to form glycosyl sulfonium ions, leading to the generation of oxocarbenium ions. This versatile approach efficiently accommodates a variety of O-nucleophiles, including primary, secondary, and tertiary, as well as complex bioactive molecules. It is compatible with various glycosyl donors and protecting groups, including superarmed, armed, and disarmed systems. Notably, the methodology operates orthogonally to traditional thioglycoside and alkyne donors and has been successfully applied to the orthogonal iterative synthesis of trisaccharides. Mechanistic insights were gained by studying the electronic effects of electron-donating (OMe) and electron-withdrawing (NO2) groups on the donors, offering a valuable understanding of the intramolecular reaction pathway.more » « less
An official website of the United States government
