Abstract Herein, we present an approach for catalytic orthogonal glycosylation utilizing earth‐abundant copper carbenes. This method operates under mild conditions and employs readily accessible starting materials, including benchtop stable enynal‐derived glycosyl donors, synthesized at the gram scale. The reaction accommodates a variety of glycosyl acceptors, including primary, secondary, and tertiary alcohols. The enynal‐derived copper carbenes exhibit remarkable reactivity and selectivity, allowing for the formation of glycosidic linkages with different protecting groups and stereochemical patterns. This approach provides access to both 1,2‐cis‐ and ‐trans‐glycosidic linkages. The product stereoselectivity is independent of the anomeric configuration of the glycosyl donor, which also has orthogonal reactivity to widely used alkynes and thioglycoside donors. An iterative synthesis of a trisaccharide further demonstrates the application of this orthogonal reactivity.
more »
« less
Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy
While strategies involving a 2e − transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or S N side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2- cis -thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp 2 and sp 3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.
more »
« less
- Award ID(s):
- 1920234
- PAR ID:
- 10228050
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 48
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 13079 to 13084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since no later than the 1970s, organic chemists have speculated on the role of glycosyl oxonium ions in chemical O-glycosylation. Such species result from the attack of ethers on glycosyl oxocarbenium ions and are invoked to explain 1,2-cis-selectivity in ether solvents. However, a systematic study to probe this phenomenon appears to be lacking in the chemical literature. Herein, we study the effects of solvent, counteranion, protecting group electron-withdrawing effects, and acceptor on O-glycosylation stereoselectivity with D-glucosyl trichloroacetimidate donors. While many of these transformations proceed with 1,2- cis-selectivity, our results suggest that glycosyl oxonium ions play minimal, if any, role in O-glycosylation.more » « less
-
Abstract While glycosyl triflates are frequently invoked as intermediates in many chemical glycosylation reactions, the chemistry of other glycosyl sulfonates remains comparatively underexplored. Given the reactivity of sulfonates can span several orders of magnitude, this represents an untapped resource for the development of stereoselective glycosylation reactions. This personal account describes our laboratories efforts to take advantage of this reactivity to develop β‐specific glycosylation reactions. Initial investigations led to the development of 2‐deoxy‐sugar tosylates as highly selective donors for β‐glycoside synthesis, an approach which has been used to great success by our group and others for the construction of deoxy‐sugar oligosaccharides and natural products. Subsequent studies demonstrate that “matching” the reactivity of the sulfonate to that of the sugar donor leads to highly selective SN2‐glycosylations with a range of substrates.more » « less
-
Traditional glycosylation methods using thioglycosides often require harsh conditions or expensive metal catalysts. This study presents a more sustainable alternative by employing copper, an earth-abundant catalyst. We developed diazo-based thioglycoside donors that, through copper catalysis, undergo intramolecular activation to form glycosyl sulfonium ions, leading to the generation of oxocarbenium ions. This versatile approach efficiently accommodates a variety of O-nucleophiles, including primary, secondary, and tertiary, as well as complex bioactive molecules. It is compatible with various glycosyl donors and protecting groups, including superarmed, armed, and disarmed systems. Notably, the methodology operates orthogonally to traditional thioglycoside and alkyne donors and has been successfully applied to the orthogonal iterative synthesis of trisaccharides. Mechanistic insights were gained by studying the electronic effects of electron-donating (OMe) and electron-withdrawing (NO2) groups on the donors, offering a valuable understanding of the intramolecular reaction pathway.more » « less
-
Chang, Sukbok (Ed.)1,2-cis-Furanosides are present in various biomedically relevant glycosides, and their stereoselective synthesis remains a significant challenge. In this vein, we have developed a stereoselective approach to 1,2-cis-furanosylations using earth-abundant copper catalysis. This protocol proceeds under mild conditions at room temperature and employs readily accessible benchtop stable enynalderived furanose donors. This chemistry accommodates a variety of alcohols, including primary, secondary, and tertiary, as well as mannosyl alcohol acceptors, which have been incompatible with most known methods of furanosylation. The resulting 1,2-cisfuranoside products exhibit high yields and anomeric selectivity with both the ribose and arabinose series. Furthermore, the anomeric selectivity is independent of the C2 oxygen-protecting group and the anomeric configuration of the starting donor. Experimental evidence and computational studies support our hypothesis that copper chelation between the C2 oxygen of the furanose donor and an incoming alcohol nucleophile is responsible for the observed 1,2-cisstereoselectivity.more » « less
An official website of the United States government

