skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 23, 2026

Title: MobiChem: A Ubiquitous Smartphone-Based Toolkit for Practical Fruit Monitoring and Analysis
This paper introduces MobiChem, a low-cost, portable, practical, and ubiquitous smartphone-based toolkit for fruit monitoring. The key idea is to leverage the light emitted from a smartphone’s screen and front camera, coupled with a custom-built screen cover, to perform comprehensive hyperspectral analysis on targeted objects. Specifically, we designed a zero-powered screen cover that selectively filters wavelengths essential for hyperspectral sensing. We then incorporate a CNN-based algorithm and a novel ranking-based learning technique that manipulates the latent space to classify maturity stages and characterize their chemical and physical factors. To demonstrate MobiChem’s feasibility, robustness, and practicality, we showcase its application in tomato, banana, and avocado sensing. Our system examines the maturity, chlorophyll, lycopene content, free sugar levels, and firmness, enabling various dietary assessments and food safety applications. Experimental results using 117 tomatoes, 98 bananas, and 73 avocados show MobiChem achieved 95.67% accuracy in chlorophyll concentration measurement, 98.76% for lycopene detection, 93.53% for sugar concentrations analysis, and 91.34% average accuracy in classifying maturity (96.64% for tomato, 86.37% for banana, and 91.03% for avocado).  more » « less
Award ID(s):
2403528
PAR ID:
10621277
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM MobiSys 2025
Date Published:
ISSN:
10.1145/3711875.3729135
Format(s):
Medium: X
Location:
ACM MobiSys
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato (‘BHN 1022’) and beefsteak tomato (‘Skyway’) were grafted onto four rootstocks [‘Estamino’ (vigorous and “generative”), ‘DR0141TX’ (vigorous and “vegetative”), ‘RST-04-106-T’ (uncharacterized), and ‘SHIELD RZ F1 (61–802)’ (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as “vegetative” (‘DR0141TX’) or “generative” (‘Estamino’), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the ‘RST-04-106-T’ rootstock, although little to no change was seen with grafting onto ‘SHIELD RZ F1 (61–802)’. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and planting season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color ( C * and H °), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups. 
    more » « less
  2. Abstract Solanum pimpinellifolium(SP) is the wild progenitor of cultivated tomato. Because of its remarkable stress tolerance and intense flavor, SP has been used as an important germplasm donor in modern tomato breeding. Here, we present a high-quality chromosome-scale genome sequence of SP LA2093. Genome comparison identifies more than 92,000 structural variants (SVs) between LA2093 and the modern cultivar, Heinz 1706. Genotyping these SVs in ~600 representative tomato accessions identifies alleles under selection during tomato domestication, improvement and modern breeding, and discovers numerous SVs overlapping genes known to regulate important breeding traits such as fruit weight and lycopene content. Expression quantitative trait locus (eQTL) analysis detects hotspots harboring master regulators controlling important fruit quality traits, including cuticular wax accumulation and flavonoid biosynthesis, and SVs contributing to these complex regulatory networks. The LA2093 genome sequence and the identified SVs provide rich resources for future research and biodiversity-based breeding. 
    more » « less
  3. Abstract Plants produce a wide range of bioactive phytochemicals, such as antioxidants and vitamins, which play crucial roles in aging prevention, inflammation reduction, and reducing the risk of cancer. Selectively harvesting these phytochemicals, such as lycopene, from tomatoes through the adsorption method is cost‐effective and energy efficient. In this work, a templated synthesis of 3D‐printed crosslinked cyclodextrin polymers featuring nanotubular structures for highly selective lycopene harvesting is reported. Polypseudorotaxanes formed by triethoxysilane‐based telechelic polyethylene glycols and α‐cyclodextrins (α‐CDs) are designed as the template to (1) synthetically access urethane‐based nanotubular structures at the molecular level, and (2) construct 3D‐printed architectures with designed macroscale voids. The polypseudorotaxane hydrogels showed good rheological properties for direct ink writing, and the 3D‐printed hydrogels were converted to the desired α‐CD polymer network through a three‐step postprinting transformation. The obtained urethane‐crosslinked α‐CD monoliths possess nanotubular structures and 3D‐printed voids. They selectively adsorb lycopene from raw tomato juice, protecting lycopene from photo‐ or thermo‐degradations. This work highlights the hierarchically templated synthesis approach in developing functional 3D‐printing materials by connecting the bottom‐up molecular assembly and synthesis with the top‐down 3D architecture control and fabrication. 
    more » « less
  4. Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems. 
    more » « less
  5. Abstract Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400–2400 nm) and canopy (420–850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA. Needle spectra were obtained at three distinct times throughout the year, while tower-based spectra were collected continuously over a nine-month period. Seasonal trends in photoprotective pigments (e.g., lutein and xanthophylls) and photosynthetic pigments (e.g., chlorophylls) aligned closely with seasonal changes in photosynthetically active radiation and gross primary productivity. To track inter-tree and seasonal variability in pigment pools with hyperspectral reflectance data, we used correlation analyses and ridge regression models. Ridge regression models using the full hyperspectral range outperformed predictions using standard linear regression with specific wavelengths in a normalized difference index fashion. Ridge regression successfully predicted all pigment pools (R2 > 0.5) with comparable accuracy at both the needle and canopy scales. The models performed best for lutein, neoxanthin, antheraxanthin, and chlorophyll a and b - which had greater inter-tree and seasonal variation - and achieved moderate accuracy for violaxanthin, alpha-carotene, and beta-carotene. These results provide a foundation for scaling biochemical traits from ground-based sensors to airborne and satellite platforms, particularly in ecosystems with subtle changes in pigment dynamics. 
    more » « less