skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: Vulnerability to Stability: Scalable Large Language Model in Queue-Based Web Service
Large Language Models (LLMs) have demonstrated exceptional capabilities in the field of Artificial Intelligence (AI) and are now widely used in various applications globally. However, one of their major challenges is handling high-concurrency workloads, especially under extreme conditions. When too many requests are sent simultaneously, LLMs often become unresponsive which leads to performance degradation and reduced reliability in real-world applications. To address this issue, this paper proposes a queue-based system that separates request handling from direct execution. By implementing a distributed queue, requests are processed in a structured and controlled manner, preventing system overload and ensuring stable performance. This approach also allows for dynamic scalability, meaning additional resources can be allocated as needed to maintain efficiency. Our experimental results show that this method significantly improves resilience under heavy workloads which prevents resource exhaustion and enables linear scalability. The findings highlight the effectiveness of a queue-based web service in ensuring LLMs remain responsive even under extreme workloads.  more » « less
Award ID(s):
2433800 2421324 1946442
PAR ID:
10621516
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
995-1000
Subject(s) / Keyword(s):
Artificial Intelligence(AI) Large Language Model(LLM) Scalability Web Service Cybersecurity
Format(s):
Medium: X
Location:
Toronto, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. High-demand LLM inference services (e.g., ChatGPT and BARD) support a wide range of requests from short chat conversations to long document reading. To ensure that all client requests are processed fairly, most major LLM inference services have request rate limits, to ensure that no client can dominate the request queue. However, this rudimentary notion of fairness also results in under-utilization of the resources and poor client experience when there is spare capacity. While there is a rich literature on fair scheduling, serving LLMs presents new challenges due to their unpredictable request lengths and their unique batching characteristics on parallel accelerators. This paper introduces the definition of LLM serving fairness based on a cost function that accounts for the number of input and output tokens processed. To achieve fairness in serving, we propose a novel scheduling algorithm, the Virtual Token Counter (VTC), a fair scheduler based on the continuous batching mechanism. We prove a 2× tight upper bound on the service difference between two backlogged clients, adhering to the requirement of work-conserving. Through extensive experiments, we demonstrate the superior performance of VTC in ensuring fairness, especially in contrast to other baseline methods, which exhibit shortcomings under various conditions. The reproducible code is available at https://github.com/Ying1123/VTC-artifact. 
    more » « less
  2. Distributed databases suffer from performance degradation under skewed workloads. Such workloads cause high contention, which is exacerbated by cross-node network latencies. In contrast, single-machine databases better handle skewed workloads because their centralized nature enables performance optimizations that execute contended requests more efficiently. Based on this insight, we propose a novel hybrid architecture that employs a single-machine database inside a distributed database and present TurboDB, the first distributed database that leverages this hybrid architecture to achieve up to an order of magnitude better performance than representative solutions under skewed workloads. TurboDB introduces two designs to tackle the core challenges unique to its hybrid architecture. First, Hybrid Concurrency Control is a specialized technique that coordinates the single-machine and distributed databases to collectively ensure process-ordered serializability. Second, Phalanx Replication provides fault tolerance for the single-machine database without significantly sacrificing its performance benefits. We implement TurboDB using CockroachDB and Cicada as the distributed and single-machine databases, respectively. Our evaluation shows that TurboDB significantly improves the performance of CockroachDB under skewed workloads. 
    more » « less
  3. The imbalanced I/O load on large parallel file systems affects the parallel I/O performance of high-performance computing (HPC) applications. One of the main reasons for I/O imbalances is the lack of a global view of system-wide resource consumption. While approaches to address the problem already exist, the diversity of HPC workloads combined with different file striping patterns prevents widespread adoption of these approaches. In addition, load-balancing techniques should be transparent to client applications. To address these issues, we proposeTarazu, an end-to-end control plane where clients transparently and adaptively write to a set of selected I/O servers to achieve balanced data placement. Our control plane leverages real-time load statistics for global data placement on distributed storage servers, while our design model employs trace-based optimization techniques to minimize latency for I/O load requests between clients and servers and to handle multiple striping patterns in files. We evaluate our proposed system on an experimental cluster for two common use cases: the synthetic I/O benchmark IOR and the scientific application I/O kernel HACC-I/O. We also use a discrete-time simulator with real HPC application traces from emerging workloads running on the Summit supercomputer to validate the effectiveness and scalability ofTarazuin large-scale storage environments. The results show improvements in load balancing and read performance of up to 33% and 43%, respectively, compared to the state-of-the-art. 
    more » « less
  4. Interactive web services increasingly drive critical business workloads such as search, advertising, games, shopping, and finance. Whereas optimizing parallel programs and distributed server systems have historically focused on average latency and throughput, the primary metric for interactive applications is instead consistent responsiveness, i.e., minimizing the number of requests that miss a target latency. This paper is the first to show how to generalize work-stealing, which is traditionally used to minimize the makespan of a single parallel job, to optimize for a target latency in interactive services with multiple parallel requests. We design a new adaptive work stealing policy, called tail-control, that reduces the number of requests that miss a target latency. It uses instantaneous request progress, system load, and a target latency to choose when to parallelize requests with stealing, when to admit new requests, and when to limit parallelism of large requests. We implement this approach in the Intel Thread Building Block (TBB) library and evaluate it on real-world workloads and synthetic workloads. The tail-control policy substantially reduces the number of requests exceeding the desired target latency and delivers up to 58% relative improvement over various baseline policies. This generalization of work stealing for multiple requests effectively optimizes the number of requests that complete within a target latency, a key metric for interactive services. 
    more » « less
  5. This study presents a comprehensive benchmarking analysis of the Arm-based AmpereOne A192-32X CPU, a high-performance but low power processor designed for cloud-native workloads characterized by high core occupancy, imperfectly-vectorized or even pure scalar software, limited need for high floating-point performance, and, increasingly, AI inference. These traits also characterize much of academic research computing. Hence a thorough investigation of this novel CPU seeking to characterize its strengths and weaknesses on academic workloads, including traditional HPC codes for which it was not designed, will shed light on its relevance in a research setting. We report comparative analyses with contemporary CPUs (Intel Sapphire Rapids, AMD EPYC, NVIDIA Grace-Grace) and illustrate AmpereOne’s architectural advantages in handling parallel workloads and optimizing power consumption. The CPUs are compared in terms of performance and power consumption using a wide range of applications covering different workloads and disciplines. 
    more » « less