skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zygoptera systematics: past, present, and future
Abstract Odonata is a midsized insect order (~6420 species) containing 3 suborders: Anisoptera (dragonflies, 3,120 species), Zygoptera (damselflies, ~3,297 species), and the intermediate Anisozygoptera (~3 species). In this review of the suborder Zygoptera, we provide a brief overview of their biology, ecology, and natural history. We also review the current state of their systematics and phylogenetics, highlighting remaining higher-level classification (eg family, superfamily) issues to address. Lastly, we will emphasize areas that are still in need of exploration which would greatly improve our understanding of the group.  more » « less
Award ID(s):
2002473 2002457
PAR ID:
10621573
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Dupuis, Julian
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
9
Issue:
4
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Avian mixed-species flocks are ubiquitous across habitats and a model for studying how heterospecific sociality influences the behavior and composition of animal communities. Here, we review the literature on mixed-species flocks and argue that a renewed focus on individual-level interactions among flock members can transform our understanding of this iconic, avian social system. Specifically, we suggest that an individual perspective will further our understanding of (1) how inter- and intraspecific variation in flock participation links to fitness costs and benefits, (2) the implications of familiarity between individuals in structuring mixed-species flock communities, and (3) how social roles within mixed-species flocks are related to social behavior within and across species. We summarize studies that use an individual perspective in each of these areas and discuss knowledge from conspecific social behavior to posit more broadly how individuals may shape mixed-species flocks. We encourage research approaches that incorporate individual variation in traits, relationships, and social roles in their assessment of mixed-species flocking dynamics. We propose that the analysis of individual variation in behavior will be particularly important for explicitly identifying fitness outcomes that led to the evolution of mixed-species flocks, which in turn affect community structure and resilience. 
    more » « less
  2. Abstract Structural variants (SVs)—including duplications, deletions, and inversions of DNA—can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single‐nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well‐documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single‐nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever‐expanding SV compendium propelled by biotechnology advancements. 
    more » « less
  3. Abstract AimGeographic variation in metabolic resources necessary for functional trait expression can set limits on species distributions. For species that need to produce and maintain biomineralized traits for survival, spatial variation in mineral macronutrients may constrain species distributions by limiting the expression of biomineralized traits. Here, we examine whetherOreohelixland snails that express heavily biomineralized shell ornaments are restricted to CaCO3rock regions, if they incorporate greater amounts of CaCO3rock carbon in their shell than less biomineralized smooth forms, and if ornamentation increases shell strength. LocationWestern United States. TaxonOreohelixland snails. MethodsWe used random forest classification models at multiple spatial resolutions to evaluate the contribution of topographic, vegetation, climate, and geologic variables in predicting the presence of heavily biomineralized shell ornaments across the range ofOreohelix. We then measured and compared shell biometric variables,14C/12C ratios, and peak force for fracture for ornamented and smooth forms from calcareous and non‐calcareous substrates. ResultsDistance to CaCO3rock was the most important variable in all models and closer proximity to CaCO3rock was associated with greater probability of local ornamentation classification. Pairwise comparisons of14C/12C ratios in closely occurring ornamented vs. smooth population pairs revealed ornamented forms incorporate greater CaCO3rock carbon than smooth forms. Ornamented types measured in this study were generally heavier and required greater peak force for fracture than smooth forms, except when comparing ornamented forms to smooth forms sampled from CaCO3rock. Main ConclusionsBiomineralization expression, species distribution, and trait function appear to be constrained by mineral supply in a highly diverse group of land snails. This trait‐environment relationship provides a basis for future investigations of CaCO3macronutrient constraints on shell form and species distribution in other terrestrial molluscs and has a direct impact on the management ofOreohelixspecies. 
    more » « less
  4. NA (Ed.)
    Abstract AimSynthesize literature on genetic structure within species to understand how geographic features and species traits influence past responses to climate change. LocationNorth America. Time PeriodWe synthesized phylogeographic studies from 1978 to 2023, which describe genetic lineages that diverged during the Pleistocene (≥11,700 years ago). Major Taxa StudiedMammals. MethodsWe conducted a literature review to map genetic breaks in species distributions, then tested a set of geographic hypotheses (e.g., mountains, rivers) to explain their position by comparing break locations to a grid within each species' sampled range using logistic regression. We then conducted a meta‐analysis using species‐specific model estimates to ask if life‐history traits explained variation in which barriers were most important in species' past response to climate change. ResultsOur findings reveal heterogeneity in both where North American mammal phylogeography has been studied and the density of genetic breaks across 229 species. We found relatively high concordance among carnivores, ungulates and lagomorphs, where breaks were associated with mountains, major water bodies and relatively even terrain. In contrast, we found high variability within rodents and shrews, and no evidence that intrinsic factors related to dispersal ability explained the importance of hypothesized barriers across all species. Main ConclusionsSouthern Mexico is a hotspot for genetic breaks that has yet to be integrated into the broader story of North American phylogeography. We show that mountains and major water bodies play particularly important roles as barriers, but substantial variation across species within orders suggests that there is more to the story besides shared climatic or phylogenetic histories. Thus, understanding the phylogeography of individual species will continue to be important given that our results suggest high variability in how species may respond to future global change. 
    more » « less
  5. Abstract Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here. 
    more » « less