ABSTRACT Many coastal marine species experienced Pleistocene gene flow between the North Pacific and Atlantic. Understanding historical connectivity between ocean basins should aid in predicting how regional faunas will respond to recent warming that has intensified trans‐Arctic dispersal. Wetland fauna of the Northwestern Atlantic may have survived in estuarine refugia throughout glacial cycles, or recolonised from the southern coast, North Pacific or Northeastern Atlantic. Here, we used multilocus genetic markers and historical climate data to investigate lineage distribution and connectivity among populations of the nominally cosmopolitan sea slugAlderia modesta, sampled from mudflats on both coasts of the North Pacific and North Atlantic. Mitochondrial DNA clades from European and North American populations were deeply divergent and reciprocally monophyletic; differences at seven polymorphic nuclear loci indicated prolonged absence of trans‐Atlantic gene flow. A Pacific ancestor likely first colonised the Atlantic during the marine biotic interchange of the middle Pliocene ~3.5 Ma. Both mtDNA phylogenetics and nuclear genotype assignments support repeated trans‐Arctic colonisation of the Northwestern Atlantic from the Pacific during inter‐glacial cycles; no gene flow was evident since the last glacial maximum, however. Time‐calibrated coalescent phylogenies, Bayesian skyline plots and haplotype networks all indicated recent population expansions in the Pacific and Europe, but not Northwestern Atlantic. In both the Pacific and Northwestern Atlantic, older lineages persisted in patchy refugia north of glacial margins, while a derived clade of Pacific haplotypes indicates northward post‐LGM expansion. The biogeographical history ofAlderiacontrasts with rocky‐shore taxa that were largely extirpated by glacial advance and recolonised from refugia following the last glacial maximum. Based on molecular differences and distinctions in radular and penial stylet morphology, we resurrect the nameAlderia harvardiensisGould 1870 forAlderiafrom the Northwestern Atlantic and North Pacific;A. modestarefers exclusively to European slugs.
more »
« less
Population genetics of the freshwater red alga Batrachospermum gelatinosum (Rhodophyta) II : Phylogeographic analyses reveal spatial genetic structure among and within five major drainage basins in eastern North America
Abstract The freshwater red algaBatrachospermum gelatinosumhas a well‐documented distribution spanning historically glaciated and unglaciated eastern North America. This alga has no known desiccation‐resistant propagule; thus, long‐distance dispersal events are likely rare. We predicted strong genetic structure among drainage basins and admixture among sites within basins. We predicted greater genetic diversity at lower latitude sites because they likely serve as refugia and the origin of northward, post‐Pleistocene range expansion. We used 10 microsatellite loci to investigate genetic diversity from 311 gametophytes from 18 sites in five major drainage basins: South Atlantic Gulf, Mid‐Atlantic, Ohio River, Great Lakes, and Northeast. Our data showed strong genetic partitioning among drainage basins and among sites within basins, yet no isolation by distance was detected. Genetic diversity varied widely among sites and was not strictly related to latitude as predicted. The results fromB. gelatinosumprovide strong support that each stream site contributes to the unique genetic variation within the species, potentially due to limited dispersal and the prevailing reproductive mode of intragametophytic selfing. Simulations of migration suggested post‐Pleistocene dispersal from the Mid‐Atlantic.Batrachospermum gelatinosumpotentially persisted in refugia that were just south of the ice margins rather than in the southernmost part of its range. Research of other taxa with similar ranges could determine whether these results are generally applicable for freshwater red algae. Nevertheless, these results fromB. gelatinosumadd to the growing literature focused on the patterns and genetic consequences of post‐Pleistocene range expansion by eastern North American biota.
more »
« less
- Award ID(s):
- 2436117
- PAR ID:
- 10621599
- Publisher / Repository:
- wiley
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 60
- Issue:
- 6
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- 1437 to 1455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world’s freshwater biodiversity hotspots.more » « less
-
Abstract In high-latitude species with high dispersal ability, such as long-distance migratory birds, populations are often assumed to exhibit little genetic structure due to high gene flow or recent postglacial expansion. We sequenced over 120 low-coverage whole genomes from across the breeding range of a long-distance migratory bird, the Veery (Catharus fuscescens), revealing strong evidence for isolation by distance. Additionally, we found distinct genetic structure between boreal, western montane U.S., and southern Appalachian sampling regions. We suggest that population genetic structure in this highly migratory species is detectable with the high resolution afforded by whole-genomic data because, similar to many migratory birds, the Veery exhibits high breeding-site fidelity, which likely limits gene flow. Resolution of isolation by distance across the breeding range was sufficient to assign likely breeding origins of individuals sampled in this species’ poorly understood South American nonbreeding range, demonstrating the potential to assess migratory connectivity in this species using genomic data. As the Veery’s breeding range extends across both historically glaciated and unglaciated regions in North America, we also evaluated whether contemporary patterns of structure and genetic diversity are consistent with historical population isolation in glacial refugia. We found that patterns of genetic diversity did not support southern montane regions (southern Appalachians or western U.S. mountains) as glacial refugia. Overall, our findings suggest that isolation by distance yields subtle associations between genetic structure and geography across the breeding range of this highly vagile species even in the absence of obvious historical vicariance or contemporary barriers to dispersal.more » « less
-
One of the few imperiled ant species in North America is the Comanche Harvester Ant, Pogonomyrmex comanche. Despite its status, little is known about its natural history throughout its range in the western Gulf Coastal Plain of North America. This study presents a regional phylogeographic analysis of P. comanche across sites in its natural range as a first step to learning more about this species. By using COI genotyping, we discovered that the center of genetic diversity is found in central Texas, which is typical for many species that found refugia in the southern North America during Pleistocene glaciations. Although diversity was slightly lower in northern populations, there was no evidence of recent population expansion into northern latitudes. Rather, some deviations from neutrality were consistent with population contraction in the northern regions (Arkansas, Oklahoma). The high diversity and relative rarity of identical sequences among samples were also consistent with dispersal limitation. The exact mechanisms driving its decline are currently unknown, but a combination of dispersal limitation and habitat loss seem likely causes.more » « less
-
ABSTRACT The southern range limit of the invasive Asian shore crab,Hemigrapsus sanguineus,along the United States East coast is further north than expected based on its native distribution. We investigated potential factors that may limit the southward spread of this species along the Mid‐Atlantic and South Atlantic bights from Virginia to South Carolina, including metabolic constraints, food availability, and habitat limitation. We searched sites identified as potential habitat forH. sanguineusto verify the presence/absence of the crab, measured the metabolic rates of crabs at their current southern range edge for comparison with previous measurements made further north on the New Hampshire coast, used digital images captured at each site to determine whether the availability of potential food decreases south of the current range limit, and used Google Earth to measure distances between suitable habitat patches north and south of the current range limit to determine whether habitat availability limits the range expansion toward the south. We encountered the species ~64 km further south than the documented range limit at Oregon Inlet, North Carolina. We found no difference in metabolism between crabs at the southern range edge compared to crabs from New Hampshire, and no consistent difference in the abundance of available food between sites north and south of the current range limit. However, we found greater distances between suitable hard‐substrate sites south of the current range limit than between sites found within the current range. We suggest that the availability of suitable habitat is the primary driver limiting the further southward range expansion ofH. sanguineus.more » « less
An official website of the United States government

