Perception is fallible. Humans know this, and so do some nonhuman animals like macaque monkeys. When monkeys report more confidence in a perceptual decision, that decision is more likely to be correct. It is not known how neural circuits in the primate brain assess the quality of perceptual decisions. Here, we test two hypotheses. First, that decision confidence is related to the structure of population activity in the sensory cortex. And second, that this relation differs from the one between sensory activity and decision content. We trained macaque monkeys to judge the orientation of ambiguous stimuli and additionally report their confidence in these judgments. We recorded population activity in the primary visual cortex and used decoders to expose the relationship between this activity and the choice-confidence reports. Our analysis validated both hypotheses and suggests that perceptual decisions arise from a neural computation downstream of visual cortex that estimates the most likely interpretation of a sensory response, while decision confidence instead reflects a computation that evaluates whether this sensory response will produce a reliable decision. Our work establishes a direct link between neural population activity in the sensory cortex and the metacognitive ability to introspect about the quality of perceptual decisions.
more »
« less
This content will become publicly available on April 16, 2026
Will monkeys wager differently as a function of stimulus fluency or when making immediate versus delayed judgements of memory?
Nonhuman animals can engage in forms of metacognitive control and monitoring processes. However, very little testing of the relation between fluency and metacognition has been done in animals, and little research has assessed memory performance in relation to animals making immediate versus delayed judgments of their memory. Here, wagers made by monkeys during test trials served as a form of confidence measure of how well they could complete a memory test. These wagers occurred either after the delay interval between the sample presentation and the test (delayed judgments) or after the sample presentation but before the delay interval and the test (immediate judgments). Overall, no significant difference in performance was found between these two conditions. We also manipulated the fluency of stimuli by either contrasting small (low fluency) or large (high fluency) stimuli or by manipulating size and the degree to which stimuli were of similar perceptual classes (low fluency, harder to distinguish stimuli such as triangular shapes) or were dissimilar in color and shape (high fluency, clip art images). Although low fluency stimuli were remembered at lower levels, the monkeys showed no evidence of adjusting wagering behavior as a function of stimulus type. Thus, the present experiment showed no evidence that monkeys benefitted from delay of judgments of memory and no evidence of stimulus fluency affecting their confidence as measured by their wagering. Rather, most monkeys preferred consistent wagers across all trial types. This may indicate a metacognitive limitation or some other form of behavioral satisficing that led to suboptimal performance.
more »
« less
- Award ID(s):
- 2043667
- PAR ID:
- 10621631
- Publisher / Repository:
- University of Rijeka
- Date Published:
- Journal Name:
- Psychological Topics
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 1332-0742
- Page Range / eLocation ID:
- 97 to 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to exert self-control varies within and across taxa. Some species can exert self-control for several seconds whereas others, such as large-brained vertebrates, can tolerate delays of up to several minutes. Advanced self-control has been linked to better performance in cognitive tasks and has been hypothesized to evolve in response to specific socio-ecological pressures. These pressures are difficult to uncouple because previously studied species face similar socio-ecological challenges. Here, we investigate self-control and learning performance in cuttlefish, an invertebrate that is thought to have evolved under partially different pressures to previously studied vertebrates. To test self-control, cuttlefish were presented with a delay maintenance task, which measures an individual's ability to forgo immediate gratification and sustain a delay for a better but delayed reward. Cuttlefish maintained delay durations for up to 50–130 s. To test learning performance, we used a reversal-learning task, whereby cuttlefish were required to learn to associate the reward with one of two stimuli and then subsequently learn to associate the reward with the alternative stimulus. Cuttlefish that delayed gratification for longer had better learning performance. Our results demonstrate that cuttlefish can tolerate delays to obtain food of higher quality comparable to that of some large-brained vertebrates.more » « less
-
Delayed matching-to-sample (DMTS) tasks are commonly used in the field of comparative cognition to study memory, including working memory. However, specific task demands vary across studies and species, and as such, DMTS tasks may engage different memory systems when features such as the available stimulus pool differ. Further, individual or species-wide differences in response to pressure to perform may increase variation within a species. We explored how task features, memory systems, and pressure interact in tufted capuchin monkeys (Sapajus [Cebus] apella) to influence performance on a DTMS task by varying the size of the possible stimulus pool across testing blocks. We also varied the amount of pressure within a testing block by training monkeys to associate a background color change with a more difficult, but more highly rewarded, trial, as we had done in previous work. In accordance with previous literature (Basile & Hampton, 2013), we found that performance greatly decreased when the possible stimulus pool was limited as compared to a large possible stimulus pool, likely because monkeys could not rely on passive familiarity memory to complete the task. However, we found no overall species tendency to fail under pressure in either the limited- or large-set conditions; instead, we found a surprising tendency to thrive under higher pressure. Taken together, our results further highlight the importance of considering DMTS task features when studying specific memory systems in non-human species and suggest that the DTMS task might not be the best paradigm for testing pressure effects without consideration of individual differences.more » « less
-
Abstract Human working memory is a capacity- and duration-limited system in which retention and manipulation of information is subject to metacognitive monitoring and control. At least some nonhuman animals appear to also monitor and control the contents of working memory, but only relatively simple cases where animals monitor or control the presence or absence of single memories have been studied. Here we combine a comparatively complex order memory task with methodology that assesses the capacity to introspect about memory. Monkeys observed sequential presentations of five images, and at test, reported which of two images from the list had appeared first during study. Concurrently, they chose to complete or avoid these tests on a trial-by-trial basis. Monkeys “knew when they knew” the correct response. They were less accurate discriminating images that had appeared close in time to one another during study and were more likely to avoid these difficult tests than they were to avoid easier tests. These results indicate that monkeys can metacognitively monitor relatively complex properties of the contents of working memory, including the quality of representations of temporal relations among images.more » « less
-
null (Ed.)Abstract Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that more meaningful stimuli recruit additional working memory resources, allowing them to be better remembered.more » « less
An official website of the United States government
