skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Familiarity, Active Memory And Pressure During A Delayed Matching-To-Sample Task In Tufted Capuchin Monkeys (Sapajus [Cebus] Apella)
Delayed matching-to-sample (DMTS) tasks are commonly used in the field of comparative cognition to study memory, including working memory. However, specific task demands vary across studies and species, and as such, DMTS tasks may engage different memory systems when features such as the available stimulus pool differ. Further, individual or species-wide differences in response to pressure to perform may increase variation within a species. We explored how task features, memory systems, and pressure interact in tufted capuchin monkeys (Sapajus [Cebus] apella) to influence performance on a DTMS task by varying the size of the possible stimulus pool across testing blocks. We also varied the amount of pressure within a testing block by training monkeys to associate a background color change with a more difficult, but more highly rewarded, trial, as we had done in previous work. In accordance with previous literature (Basile & Hampton, 2013), we found that performance greatly decreased when the possible stimulus pool was limited as compared to a large possible stimulus pool, likely because monkeys could not rely on passive familiarity memory to complete the task. However, we found no overall species tendency to fail under pressure in either the limited- or large-set conditions; instead, we found a surprising tendency to thrive under higher pressure. Taken together, our results further highlight the importance of considering DMTS task features when studying specific memory systems in non-human species and suggest that the DTMS task might not be the best paradigm for testing pressure effects without consideration of individual differences.  more » « less
Award ID(s):
1919305 2127375
PAR ID:
10631617
Author(s) / Creator(s):
;
Publisher / Repository:
Animal Behavior and Cognition
Date Published:
Journal Name:
Animal Behavior and Cognition
Volume:
12
Issue:
1
ISSN:
2372-4323
Page Range / eLocation ID:
32 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Characterizing individual differences in cognition is crucial for understanding the evolution of cognition as well as to test the biological consequences of different cognitive traits. Here, we harnessed the strengths of a uniquely large, naturally‐living primate population at the Cayo Santiago Biological Field Station to characterized individual differences in rhesus monkey performance across two social cognitive tasks. A total ofn = 204 semi‐free‐ranging adult rhesus monkeys participated in a data collection procedure, where we aimed to test individuals on both tasks at two time‐points that were one year apart. In thesocioemotional responses task,we assessed monkeys' attention to conspecific photographs with neutral versus negative emotional expressions. We found that monkeys showed overall declines in interest in conspecific photographs with age, but relative increases in attention to threat stimuli specifically, and further that these responses exhibited long‐term stability across repeated testing. In thegaze following taskwe assessed monkeys' propensity to co‐orient with an experimenter. Here, we found no evidence for age‐related change in responses, and responses showed only limited repeatability over time. Finally, we found some evidence for common individual variation for performance across the tasks: monkeys that showed greater interest in conspecific photographs were more likely to follow a human's gaze. These results show how studies of comparative cognitive development and aging can provide insights into the evolution of cognition, and identify core primate social cognitive traits that may be related across and within individuals. 
    more » « less
  2. Abstract Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search Task in monkeys. However, several studies have documented no impairment on other nonnavigational spatial memory tests following permanent hippocampal lesions. It was hypothesized that transient, but not permanent, hippocampal disruption produces deficits because monkeys undergoing transient inactivation continue to try to use a hippocampal‐dependent strategy, whereas monkeys with permanent lesions use a nonhippocampal‐dependent strategy. We evaluated this hypothesis by testing five rhesus monkeys with hippocampal lesions and five controls on a computerized analogue of the Hamilton Search Task. On each trial, monkeys saw an array of squares on a touchscreen, each of which “hid” one reward. Retrieving a reward depleted that location and monkeys continued selecting squares until they found all rewards. The optimal strategy is to remember chosen locations and choose each square once. Unlike the inactivation study, monkeys with hippocampal damage were as accurate as controls regardless of retention interval. Critically, we found no evidence that the groups used different strategies, as measured by learning rates, spatial search biases, perseverative win‐stay errors, or inter‐choice distance. This discrepancy between the effect of inactivations and lesions may result from off‐target effects of inactivations or as‐yet‐unidentified differences between the physical and computerized tasks. Combined with previous evidence that hippocampal damage impairs navigational memory in monkeys, this evidence constrains the role of the hippocampus in spatial memory as being critical for navigational tests that likely involve allocentric spatial memory but not nonnavigational tests that likely involve egocentric spatial memory. 
    more » « less
  3. Attention filters sensory inputs to enhance task-relevant information. It is guided by an “attentional template” that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks. 
    more » « less
  4. Abstract Human cooperation can be facilitated by the ability to create a mental representation of one’s own actions, as well as the actions of a partner, known as action co-representation. Even though other species also cooperate extensively, it is still unclear whether they have similar capacities. The Joint Simon task is a two-player task developed to investigate this action co-representation. We tested brown capuchin monkeys (Sapajus [Cebus] apella), a highly cooperative species, on a computerized Joint Simon task and found that, in line with previous research, the capuchins' performance was compatible with co-representation. However, a deeper exploration of the monkeys’ responses showed that they, and potentially monkeys in previous studies, did not understand the control conditions, which precludes the interpretation of the results as a social phenomenon. Indeed, further testing to investigate alternative explanations demonstrated that our results were due to low-level cues, rather than action co-representation. This suggests that the Joint Simon task, at least in its current form, cannot determine whether non-human species co-represent their partner’s role in joint tasks. 
    more » « less
  5. Abstract Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single‐neuron activity from human participants as they completed a paired‐task session consisting of a passive‐viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired‐task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept‐related activations in the working memory task, as well as target‐location and serial‐position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts. 
    more » « less