Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization.
more »
« less
This content will become publicly available on June 24, 2026
Low-Energy Backgrounds in Solid-State Phonon and Charge Detectors
Solid-state phonon and charge detectors probe the scattering of weakly interacting particles, such as dark matter and neutrinos, through their low recoil thresholds. Recent advancements have pushed sensitivity to eV-scale energy depositions, uncovering previously unseen low-energy excess backgrounds. While some arise from known processes such as thermal radiation, luminescence, and stress, others remain unexplained. This review examines these backgrounds, their possible origins, and parallels to low-energy effects in solids, an understanding of which is essential for interpreting particle interactions at and below the eV scale.
more »
« less
- Award ID(s):
- 2309456
- PAR ID:
- 10621648
- Publisher / Repository:
- Annual Review of Nuclear and Particle Science
- Date Published:
- Journal Name:
- Annual Review of Nuclear and Particle Science
- ISSN:
- 0163-8998
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The fast development of electric vehicles (EV) and EV chargers introduces many factors that affect the grid. EV charging and charge scheduling also bring challenges to EV drivers and grid operators. In this work, we propose a human-centric, data-driven, city-scale, multivariate optimization approach for the EV-interfaced grid. This approach takes into account user historical driving and charging habits, user preferences, EV characteristics, city-scale mobility, EV charger availability and price, and grid capacity. The user preferences include the trade-off between cost and time to charge, as well as incentives to participate in different energy-saving programs. We leverage deep reinforcement learning (DRL) to make recommendations to EV drivers and optimize their welfare while enhancing grid performance.more » « less
-
Abstract Understanding the physical mechanisms responsible for the cross‐scale energy transport and plasma heating from solar wind into the Earth's magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from the Magnetosphere Multiscale (MMS) mission at the dawn‐side high‐latitude dayside boundary layer on February 25, 2016 between 18:55 and 20:05 UT. During this interval, MMS encountered both the inner and outer boundary layers with quasiperiodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin‐Helmholtz instability (KHI). The intervals within the low frequency wave structures contained several counter‐streaming, low‐ (0–200 eV) and mid‐energy (200 eV–2 keV) electrons in the loss cone and trapped energetic (70–600 keV) electrons in alternate intervals. The counter‐streaming electron intervals were associated with large‐magnitude field‐aligned Poynting fluxes. Burst mode data at the large Alfvén velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti‐field aligned wave Poynting fluxes, and wave activity from sub‐proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfvén waves but their contribution to parallel electron heating was not sufficient to explain the >100 eV electrons.more » « less
-
Abstract The futureRicochetexperiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochetCollaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochetneutron background characterization using$$^3$$ He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to theRicochetGeant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochetexperiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochetexperiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.more » « less
-
Abstract We report on a novel scenario of subauroral arcs within strong subauroral ion drifts (SAID)‐STEVE and Picket Fence. Their explanation requires a local source of low‐energy,ε < 18.75 eV, suprathermal electrons, and N2vibrational and electronic excitation below ∼270 km. We show that the ionospheric feedback instability in strong SAID flows with depleted density troughs generates intense, small‐scale field‐aligned currents and parallel electric fields below the F2peak. With these fields, we employed a rigorous numerical solution of the Boltzmann kinetic equation for the distribution of ionospheric electrons and determined the power going to excitation and ionization of neutral gas (the energy balance). The obtained suprathermal electron population and energy balance at altitudes of ∼130–140 km are just what is necessary for Picket Fence. Concerning STEVE, the kinetic theory predictions are in a good qualitative agreement with its basic features, such as the enhanced continuum emissions. Besides, the theory predicts that subauroral arcs might have the transient phase with typical aurora‐like emissions that fade out afterward.more » « less
An official website of the United States government
