Abstract The incorporation of high‐performance optoelectronic devices into photonic neuromorphic processors can substantially accelerate computationally intensive matrix multiplication operations in machine learning (ML) algorithms. However, the conventional designs of individual devices and system are largely disconnected, and the system optimization is limited to the manual exploration of a small design space. Here, a device‐system end‐to‐end design methodology is reported to optimize a free‐space optical general matrix multiplication (GEMM) hardware accelerator by engineering a spatially reconfigurable array made from chalcogenide phase change materials. With a highly parallelized integrated hardware emulator with experimental information, the design of unit device to directly optimize GEMM calculation accuracy is achieved by exploring a large parameter space through reinforcement learning algorithms, including deep Q‐learning neural network, Bayesian optimization, and their cascaded approach. The algorithm‐generated physical quantities show a clear correlation between system performance metrics and device specifications. Furthermore, physics‐aware training approaches are employed to deploy optimized hardware to the tasks of image classification, materials discovery, and a closed‐loop design of optical ML accelerators. The demonstrated framework offers insights into the end‐to‐end and co‐design of optoelectronic devices and systems with reduced human supervision and domain knowledge barriers.
more »
« less
This content will become publicly available on July 3, 2026
Machine-learning-assisted photonic device development: a multiscale approach from theory to characterization
Abstract Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications, including telecommunications, imaging, sensing, and quantum information processing. PDD is an iterative, five-step process that consists of: (i) deriving device behavior from design parameters, (ii) simulating device performance, (iii) finding the optimal candidate designs from simulations, (iv) fabricating the optimal device, and (v) measuring device performance. Classically, all these steps involve Bayesian optimization, material science, control theory, and direct physics-driven numerical methods. However, many of these techniques are computationally intractable, monetarily costly, or difficult to implement at scale. In addition, PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes. However, the advent of machine learning over the past decade has provided novel, data-driven strategies for tackling these challenges, including surrogate estimators for speeding up computations, generative modeling for noisy measurement modeling and data augmentation, reinforcement learning for fabrication, and active learning for experimental physical discovery. In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD (ML-PDD) for efficient design optimization with powerful generative models, fast simulation and characterization modeling under noisy measurements, and reinforcement learning for fabrication. This review will provide researchers from diverse backgrounds with valuable insights into this emerging topic, fostering interdisciplinary efforts to accelerate the development of complex photonic devices and systems.
more »
« less
- PAR ID:
- 10621684
- Publisher / Repository:
- De Gruyter Brill
- Date Published:
- Journal Name:
- Nanophotonics
- ISSN:
- 2192-8606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Moghaddam, Mohsen; Marion, Tucker; Holtta-Otto, Katja; Fu, Kate; Olechowski, Alison; McComb, Christopher (Ed.)The early-stage product design and development (PDD) process fundamentally involves the processing, synthesis, and communication of a large amount of information to make a series of key decisions on design exploration and specification, concept generation and evaluation, and prototyping. Although most current PDD practices depend heavily on human intuition, advances in computing, communication, and human–computer interaction technologies can transform PDD processes by combining the creativity and ingenuity of human designers with the speed and precision of computers. Emerging technologies like artificial intelligence (AI), cloud computing, and extended reality (XR) stand to substantially change the way designers process information and make decisions in the early stages of PDD by enabling new methods such as natural language processing, generative modeling, cloud-based virtual collaboration, and immersive design and prototyping. These new technologies are unlikely to render the human designer obsolete, but rather do change the role that the human designer plays. Thus, it is essential to understand the designer's role as an individual, a team, and a group that forms an organization. The purpose of this special issue is to synthesize the state-of-the-art research on technologies and methods that augment the performance of designers in the front-end of PDD—from understanding user needs to conceptual design, prototyping, and development of systems architecture while also emphasizing the critical need to understand the designer and their role as well.more » « less
-
From higher computational efficiency to enabling the discovery of novel and complex structures, deep learning has emerged as a powerful framework for the design and optimization of nanophotonic circuits and components. However, both data-driven and exploration-based machine learning strategies have limitations in their effectiveness for nanophotonic inverse design. Supervised machine learning approaches require large quantities of training data to produce high-performance models and have difficulty generalizing beyond training data given the complexity of the design space. Unsupervised and reinforcement learning-based approaches on the other hand can have very lengthy training or optimization times associated with them. Here we demonstrate a hybrid supervised learning and reinforcement learning approach to the inverse design of nanophotonic structures and show this approach can reduce training data dependence, improve the generalizability of model predictions, and significantly shorten exploratory training times. The presented strategy thus addresses several contemporary deep learning-based challenges, while opening the door for new design methodologies that leverage multiple classes of machine learning algorithms to produce more effective and practical solutions for photonic design.more » « less
-
Abstract Recent remarkable progress in artificial intelligence (AI) has garnered tremendous attention from researchers, industry leaders, and the general public, who are increasingly aware of AI's growing impact on everyday life. The advancements of AI and deep learning have also significantly influenced the field of nanophotonics. On the one hand, deep learning facilitates data‐driven strategies for optimizing and solving forward and inverse problems of nanophotonic devices. On the other hand, photonic devices offer promising optical platforms for implementing deep neural networks. This review explores both AI for photonic design and photonic implementation of AI. Various deep learning models and their roles in the design of photonic devices are introduced, analyzing the strengths and challenges of these data‐driven methodologies from the perspective of computational cost. Additionally, the potential of optical hardware accelerators for neural networks is discussed by presenting a variety of photonic devices capable of performing linear and nonlinear operations, essential building blocks of neural networks. It is believed that the bidirectional interactions between nanophotonics and AI will drive the coevolution of these two research fields.more » « less
-
This study uses a data-driven approach to address the complexities associated with research focused multi-sleeve Cone Penetration Test (CPT) devices, particularly focusing on the multi-friction attachment (MFA) and multi-piezo-friction attachment (MPFA) CPT devices. Hindered by time-consuming assembly and susceptibility to sensor stream losses due to extensive electronic components, these advanced devices demand optimization to transform from research devices to practice-suitable devices. This study aims at optimizing the design of the multi-sleeve CPT devices using machine learning, with soil type classification performance as the primary metric for device configuration effectiveness. The research scope centers not on using machine learning for soil classification but on refining the design of multi-sleeve CPT devices. A two-phase data-driven approach is adopted, testing various feature combinations across eight machine learning models. The first phase involves identifying the most suitable model for the dataset, followed by a refinement of features to balance sensor number minimization and soil classification accuracy. The result is a proposed configuration for a multi-sleeve CPT device, simplifying the original design while maintaining robustness, thereby enhancing cost-efficiency and operational effectiveness in geotechnical practice. This work sheds light on how the integration of machine learning can guide the design optimization of geotechnical instruments.more » « less
An official website of the United States government
