SPV Lab is developing an innovation model for school-based citizen science that supports a networked approach to community-centered knowledge building. Students and teachers on each SPV Lab campus interact through sharing of data and lab reports, using an online platform to facilitate collaboration at a distance. Students not only learn, but also contribute to scientific knowledge of a new area of engineering research, i.e., agrivoltaics, and to their communities, providing social value through clean energy and food production. Creation of an SPV Lab citizen science network that supports and sustains student and community learning in the area of sustainable food and energy. 10 teachers were trained in 2022 and 10 more teachers were trained in 2023. The reach of these two cohorts is vast as they impact more than 30 students per year each. Conservatively this translated into nearly 1000 K-12 students gaining knowledge in the area of agriPV. The inclusion of the youth population in sustainability science and initiatives is necessary with increasing climate concerns and the push for cleaner energy. Introducing the younger populations to collaborative learning experiences about sustainable energy production is the goal of the Sonoran Photovoltaic Lab (SPV Lab). SPV Lab is a network of students, teachers, scientists, engineers, and community partners encouraging equitable, lasting, sustainable energy transitions. This group is working to increase photovoltaic systems and educate the next generation of energy researchers, knowledgeable citizens, and students to ensure that underserved students in Arizona have equitable opportunities to participate in experiential learning programs to gain a newfound understanding of sustainable systems and their impact on the environment. Members of the SPV Lab work collaboratively to achieve active engineering citizen science for K-12 students in agrivoltaics engineering research. Agrivoltaics is a mixed energy source where solar panels are raised above agricultural crops or livestock. This creates a symbiotic relationship between the photovoltaic panels and the plants or animals that are located underneath. A cooling microbiome is generated beneath the solar panels that reduces the temperature in the area, thereby providing a more hospitable home for plants while increasing panel efficiency while collecting useful energy. Due to the complexity of agriPV systems, students benefit most from working side-by-side with other students, teachers, and experts to reach innovative solutions. This project represents the importance of intergenerational collaboration as the main contributors to this project included a college professor, a college student, and a high school student, all of whom contributed equally to the success of this project. Students participate in the construction of the garden beds, mapping activities, data collection, and more. Through the introduction and implementation of these activities, the students have become more invested in the success of their agrivoltaics system and are eager to support the project. The mapping activity has led to a newly cultivated understanding of These activities promoting the significance of engineering sustainable energy solutions, as well as local food systems and healthy community relationships. In a pre-college resource exchange session, SPV Lab teachers and engineering education researchers, and at least one student representative, will co-present to represent our SPV Lab network. The team will share knowledge, resources, practices, and protocols that support SPV Lab students to (a) conduct community ethnography to inform crop choices, (b) collect data in the garden using simple digital tools and time series monitoring systems, (c) analyze and interpret data from their own gardens, and (d) share lab reports and analyze data across multiple campuses. Attendees will learn how to design and build agriPV garden spaces, build a network of collaborators, and conduct citizen science in their own regions.
more »
« less
This content will become publicly available on July 28, 2026
Synergies and trade-offs of multi-use solar landscapes
Research on multi-use solar—combining solar energy with agriculture (agrivoltaics) or natural vegetation (ecovoltaics)—is developing rapidly, but interdisciplinary integration is needed to better address management issues and to guide future research. Agrivoltaics allows farmers to develop and manage microclimates, which can help to retain or expand agricultural production in the context of changing climate and land-water limitations. However, improvements in food–energy production and other co-benefits are often site-specific, depending on background climate, soil conditions and system design. To optimize multi-use systems, it is essential to consider local economic impacts, ecosystem services and stakeholder perspectives in design and implementation.
more »
« less
- Award ID(s):
- 1943969
- PAR ID:
- 10621696
- Publisher / Repository:
- Springer Nature Limited
- Date Published:
- Journal Name:
- Nature Sustainability
- ISSN:
- 2398-9629
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Agrivoltaic systems that locate crop production and photovoltaic energy generation on the same land have the potential to aid the transition to renewable energy by reducing the competition between food, habitat, and energy needs for land while reducing irrigation requirements. Experimental efforts to date have not adequately developed an understanding of the interaction among local climate, array design and crop selection sufficient to manage trade-offs in system design. This study simulates the energy production, crop productivity and water consumption impacts of agrivoltaic array design choices in arid and semi-arid environments in the Southwestern region of the United States. Using the Penman–Monteith evapotranspiration model, we predict agrivoltaics can reduce crop water consumption by 30%–40% of the array coverage level, depending on local climate. A crop model simulating productivity based on both light level and temperature identifies afternoon shading provided by agrivoltaic arrays as potentially beneficial for shade tolerant plants in hot, dry settings. At the locations considered, several designs and crop combinations exceed land equivalence ratio values of 2, indicating a doubling of the output per acre for the land resource. These results highlight key design axes for agrivoltaic systems and point to a decision support tool for their development.more » « less
-
The rooftop is a default location for photovoltaic solar panels and is often not enough to offset increasing building energy consumption. The vertical surface of urban buildings offers a prime location to harness solar energy. The overall goal of this research is to evaluate power production potentials and multi-functionalities of a 3D building integrated photovoltaic (BIPV) facade system. The traditional BIPV which is laminated with window glass obscures the view-out and limits daylight penetration. Unlike the traditional system, the 3D solar module was configured to reflect the sun path geometry to maximize year-round solar exposure and energy production. In addition, the 3D BIPV façade offers multiple functionalities – solar regulations, daylighting penetration, and view-out, resulting in energy savings from heating, cooling, and artificial lighting load. Its ability to produce solar energy offsets building energy consumption and contributes to net-zero-energy buildings. Both solar simulations and physical prototyping were carried out to investigate the promises and challenges of the 3D BIPV façade system compared to a traditional BIPV system. With climate emergency on the rise and the need for clean, sustainable energy becoming ever more pressing, the 3D BIPV façade in this paper offers a creative approach to tackling the problems of power production, building energy savings, and user health and wellbeing.more » « less
-
null (Ed.)Agrivoltaic systems are designed to mutually benefit solar energy and agricultural production in the same location for dual-use of land. This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. Weaned Polypay lambs grew at 120 and 119 g head −1 d −1 in solar and open pastures, respectively in spring 2019 ( P = 0.90). The liveweight production between solar (1.5 kg ha −1 d −1 ) and open pastures (1.3 kg ha −1 d −1 ) were comparable ( P = 0.67). Similarly, lamb liveweight gains and liveweight productions were comparable in both solar (89 g head −1 d −1 ; 4.6 kg ha −1 d −1 ) and open (92 g head −1 d −1 ; 5.0 kg ha −1 d −1 ) pastures (all P > 0.05) in 2020. The daily water consumption of the lambs in spring 2019 were similar during early spring, but lambs in open pastures consumed 0.72 L head −1 d −1 more water than those grazed under solar panels in the late spring period ( P < 0.01). No difference was observed in water intake of the lambs in spring 2020 ( P = 0.42). Over the entire period, solar pastures produced 38% lower herbage than open pastures due to low pasture density in fully shaded areas under solar panels. The results from our grazing study indicated that lower herbage mass available in solar pastures was offset by higher forage quality, resulting in similar spring lamb production to open pastures. Our findings also suggest that the land productivity could be greatly increased through combining sheep grazing and solar energy production on the same land in agrivoltaics systems.more » « less
-
Abstract Co‐locating solar photovoltaics with vegetation could provide a sustainable solution to meeting growing food and energy demands. However, studies quantifying multiple co‐benefits resulting from maintaining vegetation at utility‐scale solar power plants are limited. We monitored the microclimate, soil moisture, panel temperature, electricity generation and soil properties at a utility‐scale solar facility in a continental climate with different site management practices. The compounding effect of photovoltaic arrays and vegetation may homogenize soil moisture distribution and provide greater soil temperature buffer against extreme temperatures. The vegetated solar areas had significantly higher soil moisture, carbon, and other nutrients compared to bare solar areas. Agrivoltaics in agricultural areas with carbon debt can be an effective climate mitigation strategy along with revitalizing agricultural soils, generating income streams from fallow land, and providing pollinator habitats. However, the benefits of vegetation cooling effects on electricity generation are rather site‐specific and depend on the background climate and soil properties. Overall, our findings provide foundational data for site preservation along with targeting site‐specific co‐benefits, and for developing climate resilient and resource conserving agrivoltaic systems.more » « less
An official website of the United States government
