skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Positive feedback: How a synergy between the streaming instability and dust coagulation forms planetesimals
Context.One of the most important open questions in planet formation is how dust grains in a protoplanetary disk manage to overcome growth barriers and form the ∼100 km planet building blocks that we call planetesimals. There appears to be a gap between the largest grains that can be produce by coagulation, and the smallest grains that are needed for the streaming instability (SI) to form planetesimals. Aims.Here we explore the novel hypothesis that dust coagulation and the SI work in tandem; in other words, they form a feedback loop where each one boosts the action of the other to bridge the gap between dust grains and planetesimals. Methods.We developed a semi-analytical model of dust concentration due to the SI, and an analytic model of how the SI affects the fragmentation and radial drift barriers. We then combined them to model our proposed feedback loop. Results.In the fragmentation-limited regime, we find a powerful synergy between the SI and dust growth that drastically increases both grain sizes and densities. We find that a midplane dust-to-gas ratio ofϵ ≥ 0.3 is a sufficient condition for the feedback loop to reach the planetesimal-forming region for turbulence values 10−4 ≤ α ≤ 10−3and grain sizes 0.01 ≤ St ≤ 0.1. In contrast, the drift-limited regime only shows grain growth without significant dust accumulation. In other words, planetesimal formation remains challenging in the drift-dominated regime and dust traps may be required to allow planet formation at wide orbital distances.  more » « less
Award ID(s):
2007422
PAR ID:
10621837
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
A&A
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
696
ISSN:
0004-6361
Page Range / eLocation ID:
L23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. The degree of coupling between the gas and the magnetic field during the collapse of a core and the subsequent formation of a disk depends on the assumed dust size distribution. Aims. We study the impact of grain–grain coagulation on the evolution of magnetohydrodynamic (MHD) resistivities during the collapse of a prestellar core. Methods. We use a 1D model to follow the evolution of the dust size distribution, out-of-equilibrium ionisation state, and gas chemistry during the collapse of a prestellar core. To compute the grain–grain collisional rate, we consider models for both random and systematic, size-dependent, velocities. We include grain growth through grain–grain coagulation and ice accretion, but ignore grain fragmentation. Results. Starting with a Mathis-Rumpl-Nordsieck (MRN) size distribution (Mathis et al. 1977, ApJ, 217, 425), we find that coagulation in grain–grain collisions generated by hydrodynamical turbulence is not efficient at removing the smallest grains and, as a consequence, does not have a large effect on the evolution of the Hall and ambipolar diffusion MHD resistivities, which still drop significantly during the collapse like in models without coagulation. The inclusion of systematic velocities, possibly induced by the presence of ambipolar diffusion, increases the coagulation rate between small and large grains, removing small grains earlier in the collapse and therefore limiting the drop in the Hall and ambipolar diffusion resistivities. At intermediate densities ( n H ~ 10 8 cm −3 ), the Hall and ambipolar diffusion resistivities are found to be higher by 1 to 2 orders of magnitude in models with coagulation than in models where coagulation is ignored, and also higher than in a toy model without coagulation where all grains smaller than 0.1 μ m would have been removed in the parent cloud before the collapse. Conclusions. When grain drift velocities induced by ambipolar diffusion are included, dust coagulation happening during the collapse of a prestellar core starting from an initial MRN dust size distribution appears to be efficient enough to increase the MHD resistivities to the values necessary to strongly modify the magnetically regulated formation of a planet-forming disk. A consistent treatment of the competition between fragmentation and coagulation is, however, necessary before reaching firm conclusions. 
    more » « less
  2. Dust grains influence many aspects of star formation, including planet formation and the opacities for radiative transfer, chemistry, and the magnetic field via Ohmic, Hall, as well as ambipolar diffusion. The size distribution of the dust grains is the primary characteristic influencing all these aspects. Grain size increases by coagulation throughout the star formation process. In this work, we describe numerical simulations of protostellar collapse using methods described in earlier papers of this series. We compute the evolution of the grain size distribution from coagulation and the non-ideal magnetohydrodynamics effects self-consistently and at low numerical cost. We find that the coagulation efficiency is mostly affected by the time spent in high-density regions. Starting from sub-micron radii, grain sizes reach more than 100 µm in an inner protoplanetary disk that is only 1000 yr old. We also show that the growth of grains significantly affects the resistivities, while also having an indirect effect on the dynamics and angular momentum of the disk. 
    more » « less
  3. Abstract The streaming instability (SI) is a leading candidate for planetesimal formation, which can concentrate solids through two-way aerodynamic interactions with the gas. The resulting concentrations can become sufficiently dense to collapse under particle self-gravity, forming planetesimals. Previous studies have carried out large parameter surveys to establish the critical particle to gas surface density ratio (Z), above which SI-induced concentration triggers planetesimal formation. The thresholdZdepends on the dimensionless stopping time (τs, a proxy for dust size). However, these studies neglected both particle self-gravity and external turbulence. Here, we perform 3D stratified shearing box simulations with both particle self-gravity and turbulent forcing, which we characterize via a turbulent diffusion parameter,αD. We find that forced turbulence, at amplitudes plausibly present in some protoplanetary disks, can increase the thresholdZby up to an order of magnitude. For example, forτs= 0.01, planetesimal formation occurs whenZ≳ 0.06, ≳0.1, and ≳0.2 atαD= 10−4, 10−3.5, and 10−3, respectively. We provide a single fit to the criticalZrequired for the SI to work as a function ofαDandτs(although limited to the rangeτs= 0.01–0.1). Our simulations also show that planetesimal formation requires a mid-plane particle-to-gas density ratio that exceeds unity, with the critical value being largely insensitive toαD. Finally, we provide an estimation of particle scale height that accounts for both particle feedback and external turbulence. 
    more » « less
  4. Abstract The dust grain size distribution (GSD) likely varies significantly across star-forming environments in the Universe, but its impact on star formation remains unclear. This ambiguity arises because the GSD interacts nonlinearly with processes like heating, cooling, radiation, and chemistry, which have competing effects and varying environmental dependencies. Processes such as grain coagulation, expected to be efficient in dense star-forming regions, reduce the abundance of small grains and increase that of larger grains. Motivated by this, we investigate the effects of similar GSD variations on the thermochemistry and evolution of giant molecular clouds (GMCs) using magnetohydrodynamic simulations spanning a range of cloud masses and grain sizes, which explicitly incorporate the dynamics of dust grains within the full-physics framework of the STARFORGE project. We find that grain size variations significantly alter GMC thermochemistry: the leading-order effect is that larger grains, under fixed dust mass, GSD dynamic range, and dust-to-gas ratio, result in lower dust opacities. This reduced opacity permits interstellar radiation field and internal radiation photons to penetrate more deeply. This leads to rapid gas heating and inhibited star formation. Star formation efficiency is highly sensitive to grain size, with an order-of-magnitude reduction when grain size dynamic range increases from 10−3–0.1μm to 0.1–10μm. Additionally, warmer gas suppresses low-mass star formation, and decreased opacities result in a greater proportion of gas in diffuse ionized structures. 
    more » « less
  5. ABSTRACT We study the linear growth and non-linear saturation of the ‘acoustic Resonant Drag Instability’ (RDI) when the dust grains, which drive the instability, have a wide, continuous spectrum of different sizes. This physics is generally applicable to dusty winds driven by radiation pressure, such as occurs around red-giant stars, star-forming regions, or active galactic nuclei. Depending on the physical size of the grains compared to the wavelength of the radiation field that drives the wind, two qualitatively different regimes emerge. In the case of grains that are larger than the radiation’s wavelength – termed the constant-drift regime – the grain’s equilibrium drift velocity through the gas is approximately independent of grain size, leading to strong correlations between differently sized grains that persist well into the saturated non-linear turbulence. For grains that are smaller than the radiation’s wavelength – termed the non-constant-drift regime – the linear instability grows more slowly than the single-grain-size RDI and only the larger grains exhibit RDI-like behaviour in the saturated state. A detailed study of grain clumping and grain–grain collisions shows that outflows in the constant-drift regime may be effective sites for grain growth through collisions, with large collision rates but low collision velocities. 
    more » « less