skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Effect of novel riser design using 3D sand-printing on the defects and mechanical performance of a casting
3D sand printing (3DSP) is a comparatively new additive manufacturing (AM) technology which has opened new opportunities for the sand-casting industry. Complex parts with intricate features that were inaccessible through the traditional mold and core making process and would take significant lead time to production can be now easily manufactured using 3DSP technology. Previous studies through numerical modeling have revealed that novel 3D riser geometries offer significant advantages during solidification of the casting by providing higher solidification time, less macro-porosity, and less piping inside the riser. This current study focuses on the experimental validation of the numerical study. Nine different riser geometries were printed as cores using 3DSP which were later installed in a larger sand mold accommodating the rigging (sprue, runners, ingates). Three novel riser shapes (ellipsoid, spherical and fusion) and one traditional cylindrical riser were explored in this study. The spherical risers were studied to understand the effect of the novel riser shape on the neck region. With three repetitions of each design (total of nine designs), a total of 27 castings were manufactured and characterized for statistical analysis. ASTM A216 WCB (wrought carbon steel, grade B) alloy was used to pour all the molds. Results from the ultrasonic tests, flexural test, and X-ray CT inspection show strong agreement with the previous FEA analysis along with 45 % yield improvement, 32 % reduction in riser neck diameter and increased mechanical strength.  more » « less
Award ID(s):
1944120
PAR ID:
10623687
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Manufacturing Processes
Volume:
135
Issue:
C
ISSN:
1526-6125
Page Range / eLocation ID:
179 to 188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 3D sand printing (3DSP) process is a binder jetting class of additive manufacturing process that can incorporate complex 3D mold designs and consolidate cores with intricate features that were previously inaccessible. Prior studies in 3DSP mold design have been shown to improve pouring and filling conditions for sand casting. However, the opportunity to improve casting quality by exploring 3D riser designs during the solidification stage has not yet been explored. In this research, three novel 3D riser geometries—ellipsoid, spherical, and a fusion riser (combination of cylindrical and ellipsoid riser) were investigated. The results were compared to the benchmark cylindrical risers to assess casting performance (e.g., reduction in shrinkage porosity, increase in solidification time). Computational solidification simulations have been presented to evaluate the characteristics of the novel risers for three different metal alloys- nickel aluminum bronze (NAB), low-carbon steel A216 (WCB), and aluminum alloy (A319) alloy. From the results of this research, spherical risers were found to provide 45% yield improvement of for the three alloys studied. In addition, the riser neck diameter using a spherical riser experienced up to 77% reduction when compared to the recommended dimensions from previous literature. Finally, one of the spherical riser designs provided 18% improvement in terms of riser-pipe safety height over the benchmark design. Findings from this research will help metalcasting industries to optimize their riser designs for complex casting geometries by implementing 3D riser geometries (via 3DSP) into traditional mold making for yield improvement and defect-free castings. 
    more » « less
  2. Manoj Gupta (Ed.)
    Three-dimensional (3D) printing with continuous carbon-fiber-reinforced polymer (C-CFRP) composites is under increasing development, as it offers more versatility than traditional molding processes, such as the out-of-autoclave-vacuum bag only (OOA-VBO) process. However, due to the layer-by-layer deposition of materials, voids can form between the layers and weaken some of the parts’ properties, such as the interlaminar shear strength (ILSS). In this paper, a novel mold-less magnetic compaction force-assisted additive manufacturing (MCFA-AM) method was used to print carbon nanofiber (CNF) z-threaded CFRP (ZT-CFRP) laminates with significantly improved ILSS and reduced void content compared to traditional C-CFRP laminates, which are printed using a no-pressure 3D-printing process (similar to the fused-deposition-modeling process). The radial flow alignment (RFA) and resin-blending techniques were utilized to manufacture a printing-compatible fast-curing ZT-CFRP prepreg tape to act as the feedstock for a MCFA-AM printhead, which was mounted on a robotic arm. In terms of the ILSS, the MCFA-AM method coupled with ZT-CFRP nanomaterial technology significantly outperformed the C-CFRP made with both the traditional no-pressure 3D-printing process and the OOA-VBO molding process. Furthermore, the mold-less MCFA-AM process more than doubled the production speed of the OOA-VBO molding process. This demonstrates that through the integration of new nanomaterials and 3D-printing techniques, a paradigm shift in C-CFRP manufacturing with significantly better performance, versatility, agility, efficiency, and lower cost is achievable. 
    more » « less
  3. PurposeThis study aims to provide understanding of the influence of external factors, such as gravity, during sintering of three dimensional (3D)-printed parts in which the initial relative density and cohesion between the powder particles are lower compared with those present in the green parts produced by traditional powder technologies. A developed model is used to predict shrinkage and shape distortion of 3D-printed powder components at high sintering temperatures. Design/methodology/approachThree cylindrical shape connector geometries are designed, including horizontal and vertical tubes of different sizes. Several samples are manufactured by binder jetting to validate the model, and numerical results are compared with the measurements of the sintered shape. FindingsSimulations are consistent with empirical data, proving that the continuum theory of sintering can effectively predict sintering deformation in additively manufactured products. Originality/valueThis work includes the assessment of the accuracy and limits of a multiphysics continuum mechanics–based sintering model in predicting gravity-induced distortions in complex-shaped additively manufactured components. 
    more » « less
  4. null (Ed.)
    Understanding the deformation behavior during nanoimprint lithography is crucial for high resolution patterning. Molecular dynamics modeling was implemented to investigate the effect of different mold profiles (cylindrical, rectangular, and spherical) on the von Mises stress, lattice dislocations, and material deformation. Relatively higher von Mises stress (1.08 × 107 Pa) was observed for the spherical mold profile compared to the rectangular and cylindrical profiles due to the larger surface area of contact during the mold penetration stage of NIL. Substantial increases in the von Mises stress were observed for all the mold geometries during the mold penetration stage. The von Mises stresses had a reduction in the relaxation and mold retrieval stages based on the rearrangement of the gold atoms. The lattice dislocation during the deformation process revealed the formation of the BCC structure which further reverted to the FCC structure after the mold retrieval. The polyhedral template matching (PTM) method was used to explain the retention of the FCC structure and subsequent ductile behavior of the substrate. The cylindrical mold had the lowest percentage spring back in both of the orthogonal directions and thus replicated the mold profile with high-fidelity as compared to the spherical and rectangular molds. The findings of this research can aid the design of molds for several applications. 
    more » « less
  5. Soft actuators have been studied and analyzed as a new solution for soft robotic technologies. These types of actuators have many advantages due to their predictable deformations and their ease of control, enabling them to hold and move delicate objects performing complex movements in confined spaces. Soft actuators can be made using different manufacturing processes, but the most common is mold casting. However, this manufacturing process involves several steps, increasing the manufacturing time and hindering changes in the design. This paper presents a novel design of a 3D printed soft pneumatic actuator based on additive manufacturing, achieving design versatility and performance. The produced actuator has seven segments that can be individually controlled. The actuators were made using fused deposition modeling (FDM) technology in one continuous process and without support material. The mechanical performance of the soft actuators was demonstrated, analyzing the deformation in the z-axis based on input pressure. 
    more » « less