skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular Dynamics Investigation of the Deformation Mechanism of Gold with Variations in Mold Profiles during Nanoimprinting
Understanding the deformation behavior during nanoimprint lithography is crucial for high resolution patterning. Molecular dynamics modeling was implemented to investigate the effect of different mold profiles (cylindrical, rectangular, and spherical) on the von Mises stress, lattice dislocations, and material deformation. Relatively higher von Mises stress (1.08 × 107 Pa) was observed for the spherical mold profile compared to the rectangular and cylindrical profiles due to the larger surface area of contact during the mold penetration stage of NIL. Substantial increases in the von Mises stress were observed for all the mold geometries during the mold penetration stage. The von Mises stresses had a reduction in the relaxation and mold retrieval stages based on the rearrangement of the gold atoms. The lattice dislocation during the deformation process revealed the formation of the BCC structure which further reverted to the FCC structure after the mold retrieval. The polyhedral template matching (PTM) method was used to explain the retention of the FCC structure and subsequent ductile behavior of the substrate. The cylindrical mold had the lowest percentage spring back in both of the orthogonal directions and thus replicated the mold profile with high-fidelity as compared to the spherical and rectangular molds. The findings of this research can aid the design of molds for several applications.  more » « less
Award ID(s):
1663128
PAR ID:
10297146
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
10
ISSN:
1996-1944
Page Range / eLocation ID:
2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cylindrical specimens of CrCoNi alloy with electropolished surfaces were subjected to constant total strain amplitude low cycle fatigue. The alloy exhibited an initial period of cyclic hardening followed by cyclic softening until failure occurred. At the end of hardening stage at the peak of cyclic stress, well-developed persistent slip markings (PSMs) consisting of extrusions and intrusions were associated with thin deformation twins. A sophisticated experimental workflow was designed to extract information from the surface and the bulk of tested material. A combination of SEM, EBSD, ECCI, FIB and HR-STEM was used to study the internal structure and the surface profiles around the deformation twins, which were produced during the initial period of cyclic loading. Furthermore, localized cyclic plastic strain and stress concentrations near deformation twins led not only to early, well-developed PSMs, but also to the activation of TWIP and TRIP plasticity even at low macroscopic stress amplitudes. 
    more » « less
  2. Objective: The objective of this study was to compare the biomechanical differences of different rod configurations following anterior column realignment (ACR) and pedicle subtraction osteotomy (PSO) for an optimal correction technique and rod configuration that would minimize the risk of rod failure.Methods: A validated spinopelvic (L1-pelvis) finite element model was used to simulate ACR at the L3–4 level. The ACR procedure was followed by dual-rod fixation, and for 4-rod constructs, either medial/lateral accessory rods (connected to primary rods) or satellite rods (directly connected to ACR level screws). The range of motion (ROM), maximum von Mises stress on the rods, and factor of safety (FOS) were calculated for the ACR models and compared to the existing literature of different PSO rod configurations.Results: All of the 4-rod ACR constructs showed a reduction in ROM and maximum von Mises stress compared to the dual-rod ACR construct. Additionally, all of the 4-rod ACR constructs showed greater percentage reduction in ROM and maximum von Mises stress compared to the PSO 4-rod configurations. The ACR satellite rod construct had the maximum stress reduction i.e., 47.3% compared to dual-rod construct and showed the highest FOS (4.76). These findings are consistent with existing literature that supports the use of satellite rods to reduce the occurrence of rod fracture.Conclusion: Our findings suggest that the ACR satellite rod construct may be the most beneficial in reducing the risk of rod failure compared to all other PSO and ACR constructs. 
    more » « less
  3. 3D sand printing (3DSP) is a comparatively new additive manufacturing (AM) technology which has opened new opportunities for the sand-casting industry. Complex parts with intricate features that were inaccessible through the traditional mold and core making process and would take significant lead time to production can be now easily manufactured using 3DSP technology. Previous studies through numerical modeling have revealed that novel 3D riser geometries offer significant advantages during solidification of the casting by providing higher solidification time, less macro-porosity, and less piping inside the riser. This current study focuses on the experimental validation of the numerical study. Nine different riser geometries were printed as cores using 3DSP which were later installed in a larger sand mold accommodating the rigging (sprue, runners, ingates). Three novel riser shapes (ellipsoid, spherical and fusion) and one traditional cylindrical riser were explored in this study. The spherical risers were studied to understand the effect of the novel riser shape on the neck region. With three repetitions of each design (total of nine designs), a total of 27 castings were manufactured and characterized for statistical analysis. ASTM A216 WCB (wrought carbon steel, grade B) alloy was used to pour all the molds. Results from the ultrasonic tests, flexural test, and X-ray CT inspection show strong agreement with the previous FEA analysis along with 45 % yield improvement, 32 % reduction in riser neck diameter and increased mechanical strength. 
    more » « less
  4. Abstract The 3D sand printing (3DSP) process is a binder jetting class of additive manufacturing process that can incorporate complex 3D mold designs and consolidate cores with intricate features that were previously inaccessible. Prior studies in 3DSP mold design have been shown to improve pouring and filling conditions for sand casting. However, the opportunity to improve casting quality by exploring 3D riser designs during the solidification stage has not yet been explored. In this research, three novel 3D riser geometries—ellipsoid, spherical, and a fusion riser (combination of cylindrical and ellipsoid riser) were investigated. The results were compared to the benchmark cylindrical risers to assess casting performance (e.g., reduction in shrinkage porosity, increase in solidification time). Computational solidification simulations have been presented to evaluate the characteristics of the novel risers for three different metal alloys- nickel aluminum bronze (NAB), low-carbon steel A216 (WCB), and aluminum alloy (A319) alloy. From the results of this research, spherical risers were found to provide 45% yield improvement of for the three alloys studied. In addition, the riser neck diameter using a spherical riser experienced up to 77% reduction when compared to the recommended dimensions from previous literature. Finally, one of the spherical riser designs provided 18% improvement in terms of riser-pipe safety height over the benchmark design. Findings from this research will help metalcasting industries to optimize their riser designs for complex casting geometries by implementing 3D riser geometries (via 3DSP) into traditional mold making for yield improvement and defect-free castings. 
    more » « less
  5. Abstract The solidification mechanism and segregation behavior of laser-melted Mn35Fe5Co20Ni20Cu20was firstly investigated via in situ synchrotron x-ray diffraction at millisecond temporal resolution. The transient composition evolution of the random solid solution during sequential solidification of dendritic and interdendritic regions complicates the analysis of synchrotron diffraction data via any single conventional tool, such as Rietveld refinement. Therefore, a novel approach combining a hard-sphere approximation model, thermodynamic simulation, thermal expansion measurement and microstructural characterization was developed to assist in a fundamental understanding of the evolution of local composition, lattice parameter, and dendrite volume fraction corresponding to the diffraction data. This methodology yields self-consistent results across different methods. Via this approach, four distinct stages were identified, including: (I) FCC dendrite solidification, (II) solidification of FCC interdendritic region, (III) solid-state interdiffusion and (IV) final cooling with marginal diffusion. It was found out that in Stage I, Cu and Mn were rejected into liquid as Mn35Fe5Co20Ni20Cu20solidified dendritically. During Stage II, the lattice parameter disparity between dendrite and interdendritic region escalated as Cu and Mn continued segregating into the interdendritic region. After complete solidification, during Stage III, the lattice parameter disparity gradually decreases, demonstrating a degree of composition homogenization. The volume fraction of dendrites slightly grew from 58.3 to 65.5%, based on the evolving composition profile across a dendrite/interdendritic interface in diffusion calculations. Postmortem metallography further confirmed that dendrites have a volume fraction of 64.7% ± 5.3% in the final microstructure. 
    more » « less