Abstract The Aii glycinergic amacrine cell (Aii) plays a central role in bridging rod pathways with cone pathways, enabling an increased dynamic range of vision from scotopic to photopic ranges. The Aii integrates scotopic signals via chemical synapses from rod bipolar cells (RodBCs) onto the arboreal processes of Aii ACs, injecting signals into ON-cone bipolar cells (CBbs) via gap junctions with Aiis on the arboreal processes and the waist of the Aii ACs. The CBbs then carry this information to ON and OFF ganglion cell classes. In addition, the Aii is involved in the surround inhibition of OFF cone bipolar cells (CBas) through glycinergic chemical synapses from Aii ACs onto CBas. We have previously shown changes in RodBC connectivity as a consequence of rod photoreceptor degeneration in a pathoconnectome of early retinal degeneration: RPC1. Here, we evaluated the impact of rod photoreceptor degeneration on the connectivity of the Aii to determine the impacts of photoreceptor degeneration on the downstream network of the neural retina and its suitability for integrating therapeutic interventions as rod photoreceptors are lost. Previously, we reported that in early retinal degeneration, prior to photoreceptor cell loss, Rod BCs make pathological gap junctions with Aiis. Here, we further characterize this altered connectivity and additional shifts in both the excitatory drive and gap junctional coupling of Aiis in retinal degeneration, along with discussion of the broader impact of altered connectivity networks. New findings reported here demonstrate that Aiis make additional gap junctions with CBas increasing the number of BC classes that make pathological gap junctional connectivity with Aiis in degenerating retina. In this study, we also report that the Aii, a tertiary retinal neuron alters their synaptic contacts early in photoreceptor degeneration, indicating that rewiring occurs in more distant members of the retinal network earlier in degeneration than was previously predicted. This rewiring impacts retinal processing, presumably acuity, and ultimately its ability to support therapeutics designed to restore image-forming vision. Finally, these Aii alterations may be the cellular network level finding that explains one of the first clinical complaints from human patients with retinal degenerative disease, an inability to adapt back and forth from photopic to scotopic conditions.
more »
« less
Uncovering the electrical synapse proteome in retinal neurons via in vivo proximity labeling
Abstract Electrical synapses formed by Connexin 36 (Cx36) serve as a fast means for communication in the nervous systems. Only little is known about the protein complexes that constitute these synapses. In the present study, we applied different BioID strategies to screen the interactomes of Connexin 36 the major neuronal connexin and its zebrafish orthologue Cx35b in retinal neurons. Forin vivoproximity labeling in mice, we took advantage of the Cx36-EGFP strain and expressed a GFP-nanobody-TurboID fusion construct selectively in AII amacrine cells. Forin vivoBioID in zebrafish, we generated a transgenic line expressing a Cx35b-TurboID fusion under control of the Cx35b promoter. Both strategies allowed us to capture a plethora of molecules that were associated with electrical synapses and showed a high degree of evolutionary conservation in the proteomes of both species. Besides known interactors of Cx36 such as ZO-1 and ZO-2 we have identified more than 50 new proteins, such as scaffold proteins, adhesion molecules and regulators of the cytoskeleton. We further determined the subcellular localization of these proteins in AII amacrine and tested potential binding interactions with Cx36. Of note, we identified signal induced proliferation associated 1 like 3 (SIPA1L3), a protein that has been implicated in cell junction formation and cell polarity as a new scaffold of electrical synapses. Interestingly, SIPA1L3 was able to interact with ZO-1, ZO-2 and Cx36, suggesting a pivotal role in electrical synapse function. In summary, our study provides a first detailed view of the electrical synapse proteome in retinal neurons.
more »
« less
- Award ID(s):
- 2014862
- PAR ID:
- 10623778
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reduced Expression of TMEM16A Impairs Nitric Oxide-Dependent Cl− Transport in Retinal Amacrine CellsPostsynaptic cytosolic Cl − concentration determines whether GABAergic and glycinergic synapses are inhibitory or excitatory. We have shown that nitric oxide (NO) initiates the release of Cl − from acidic internal stores into the cytosol of retinal amacrine cells (ACs) thereby elevating cytosolic Cl − . In addition, we found that cystic fibrosis transmembrane conductance regulator (CFTR) expression and Ca 2+ elevations are necessary for the transient effects of NO on cytosolic Cl − levels, but the mechanism remains to be elucidated. Here, we investigated the involvement of TMEM16A as a possible link between Ca 2+ elevations and cytosolic Cl − release. TMEM16A is a Ca 2+ -activated Cl − channel that is functionally coupled with CFTR in epithelia. Both proteins are also expressed in neurons. Based on this and its Ca 2+ dependence, we test the hypothesis that TMEM16A participates in the NO-dependent elevation in cytosolic Cl − in ACs. Chick retina ACs express TMEM16A as shown by Western blot analysis, single-cell PCR, and immunocytochemistry. Electrophysiology experiments demonstrate that TMEM16A functions in amacrine cells. Pharmacological inhibition of TMEM16A with T16inh-AO1 reduces the NO-dependent Cl − release as indicated by the diminished shift in the reversal potential of GABA A receptor-mediated currents. We confirmed the involvement of TMEM16A in the NO-dependent Cl − release using CRISPR/Cas9 knockdown of TMEM16A. Two different modalities targeting the gene for TMEM16A ( ANO1 ) were tested in retinal amacrine cells: an all-in-one plasmid vector and crRNA/tracrRNA/Cas9 ribonucleoprotein. The all-in-one CRISPR/Cas9 modality did not change the expression of TMEM16A protein and produced no change in the response to NO. However, TMEM16A-specific crRNA/tracrRNA/Cas9 ribonucleoprotein effectively reduces both TMEM16A protein levels and the NO-dependent shift in the reversal potential of GABA-gated currents. These results show that TMEM16A plays a role in the NO-dependent Cl − release from retinal ACs.more » « less
-
ABSTRACT Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography inDrosophila melanogasterlooming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites. Within these spatially constrained clusters, synapses are not retinotopically organized, but instead adopt near random distributions. To investigate how this organization strategy impacts DN integration, we developed multicompartment models of DNs fitted to experimental data and using precise EM morphologies and synapse locations. We find that DN dendrite morphologies normalize EPSP amplitudes of individual synaptic inputs and that near random distributions of synapses ensure linear encoding of synapse numbers from individual VPNs. These findings illuminate how synaptic topography influences dendritic integration and suggest that linear encoding of synapse numbers may be a default strategy established through connectivity and passive neuron properties, upon which active properties and plasticity can then tune as needed.more » « less
-
Abstract The function of neuronal circuits, and its perturbation by psychoactive molecules or disease-associated genetic variants, is governed by the interplay between synapse activity and synaptic protein localization and synthesis across a heterogeneous synapse population. Here, we combine in situ measurement of synaptic multiprotein compositions and activation states, synapse activity in calcium traces or glutamate spiking, and local translation of specific genes, across the same individual synapses. We demonstrate how this high-dimensional data enables identification of interdependencies in the multiprotein-activity network, and causal dissection of complex synaptic phenotypes in disease-relevant chemical and genetic NMDAR loss of function that translatein vivo. We show how this method generalizes to other subcellular systems by deriving mitochondrial protein networks, and, using support vector machines, its value in overcoming animal variability in phenotyping. Integrating multiple synapse information modalities enables deep structure-function characterization of synapse populations and their responses to genetic and chemical perturbations.more » « less
-
Recent results have demonstrated modification of electrical synapse strength by varied forms of neuronal activity. However, the mechanisms underlying plasticity induction in central mammalian neurons are unclear. Here we show that the two established inductors of plasticity at electrical synapses in the thalamic reticular nucleus -- paired burst spiking in coupled neurons, and mGluR-dependent tetanization of synaptic input -- are separate pathways that converge at a common downstream endpoint. Using occlusion experiments and pharmacology in patched pairs of coupled neurons in vitro, we show that burst-induced depression depends on calcium entry via voltage-gated channels, is blocked by BAPTA chelation, and recruits intracellular calcium release on its way to activation of phosphatase activity. In contrast, mGluR-dependent plasticity is independent of calcium entry or calcium dynamics. Together, these results show that the spiking-initiated mechanisms underlying electrical synapse plasticity are similar to those that induce plasticity at chemical synapses, and offer the possibility that calcium-regulated mechanisms may also lead to alternate outcomes, such as potentiation. Because these mechanistic elements are widely found in mature neurons, we expect them to apply broadly to electrical synapses across the brain, acting as the crucial link between neuronal activity and electrical synapse strength.more » « less
An official website of the United States government

