Abstract We develop a space‐time Bayesian hierarchical modeling (BHM) framework for two flood risk attributes—seasonal daily maximum flow and the number of events that exceed a threshold during a season (NEETM)—at a suite of gauge locations on a river network. The model uses generalized extreme value (GEV) and Poisson distributions as marginals for these flood attributes with non‐stationary parameters. The rate parameters of the Poisson distribution and location, scale, and shape parameters of the GEV are modeled as linear functions of suitable covariates. Gaussian copulas are applied to capture the spatial dependence. The best covariates are selected using the Watanabe‐Akaike information criterion (WAIC). The modeling framework results in the posterior distribution of the flood attributes at all the gauges and various lead times. We demonstrate the utility of this modeling framework to forecast the flood risk attributes during the summer peak monsoon season (July‐August) at five gauges in the Narmada River basin (NRB) of West‐Central India for several lead times (0–3 months). As potential covariates, we consider climate indices such as El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Pacific Warm Pool Region (PWPR) from antecedent seasons, which have shown strong teleconnections with the Indian monsoon. We also include new indices related to the East Pacific and West Indian Ocean regions depending on the lead times. We show useful long lead skill from this modeling approach which has a strong potential to enable robust risk‐based flood mitigation and adaptation strategies 3 months before flood occurrences.
more »
« less
Spatial and Temporal Bayesian Hierarchical Model Over Large Domains With Application to Holocene Sea Surface Temperature Reconstruction in the Equatorial Pacific
We present a novel space‐time Bayesian hierarchical model (BHM) to reconstruct annual Sea Surface Temperature (SST) over a large domain based on SST at limited proxy (i.e., sediment core) locations. The model is tested in the equatorial Pacific. The BHM leverages Principal Component Analysis to identify dominant space‐time modes of contemporary variability of the SST field at the proxy locations and employs these modes in a Gaussian process framework to estimate SSTs across the entire domain. The BHM allows us to model the mean field and covariance, varying in space and time in the process layers of the hierarchy. Using the Markov Chain Monte Carlo (MCMC) method and suitable priors on the model parameters, posterior distributions of the model parameters and, consequently, posterior distributions of the SST fields and the attendant uncertainties are obtained for any desired year. The BHM is calibrated and validated in the contemporary period (1854–2014) and subsequently applied to reconstruct SST fields during the Holocene (0–10 ka). Results are consistent with prior inferences of La Niña‐like conditions during the Holocene. This modeling framework opens exciting prospects for modeling and reconstruction of other fields, such as precipitation, drought indices, and vegetation.
more »
« less
- Award ID(s):
- 2310487
- PAR ID:
- 10623888
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 39
- Issue:
- 12
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Model‐based projections of hydroclimate in western North America (wNA) remain uncertain and depend on how Pacific sea surface temperature (SST) will evolve in the future. However, whether climate models can accurately capture Pacific SST changes and its relationship with wNA hydroclimate in the future remains elusive. Here, we use a synthesis of proxy records and idealized model simulations to elucidate the spatiotemporal evolution and the forcings that drive wNA hydroclimate and Pacific SST during the Holocene (past ∼11,000 years), when the boundary conditions are different from the present. We find that wNA hydroclimate and Pacific SST co‐evolved during the Holocene, where wNA became wetter while the eastern equatorial Pacific and the north Pacific became warmer toward the present. We attribute changes in wNA hydroclimate to precession and carbon dioxide changes, but we are unable to attribute Pacific SST changes unambiguously to any forcing. Our analysis offers a framework to understand the relationship between wNA hydroclimate and Pacific SST and provides an empirical assessment of how these two regions are related over time.more » « less
-
Yamashita, Y.; Kano, M. (Ed.)Bayesian hybrid models (BHMs) fuse physics-based insights with machine learning constructs to correct for systematic bias. In this paper, we demonstrate a scalable computational strategy to embed BHMs in an equation-oriented modelling environment. Thus, this paper generalizes stochastic programming, which traditionally focuses on aleatoric uncertainty (as characterized by a probability distribution for uncertainty model parameters) to also consider epistemic uncertainty, i.e., mode-form uncertainty or systematic bias as modelled by the Gaussian process in the BHM. As an illustrative example, we consider ballistic firing using a BHM that includes a simplified glass-box (i.e., equation-oriented) model that neglects air resistance and a Gaussian process model to account for systematic bias (i.e., epistemic or model-form uncertainty) induced from the model simplification. The gravity parameter and the GP hypermeters are inferred from data in a Bayesian framework, yielding a posterior distribution. A novel single-stage stochastic program formulation using the posterior samples and Gaussian quadrature rules is proposed to compute the optimal decisions (e.g., firing angle and velocity) that minimize the expected value of an objective (e.g., distance from a stationary target). PySMO is used to generate expressions for the GP prediction mean and uncertainty in Pyomo, enabling efficient optimization with gradient-based solvers such as Ipopt. A scaling study characterizes the solver time and number of iterations for up to 2,000 samples from the posterior.more » « less
-
Abstract We present a Bayesian hierarchical space‐time stochastic weather generator (BayGEN) to generate daily precipitation and minimum and maximum temperatures. BayGEN employs a hierarchical framework with data, process, and parameter layers. In the data layer, precipitation occurrence at each site is modeled using probit regression using a spatially distributed latent Gaussian process; precipitation amounts are modeled as gamma random variables; and minimum and maximum temperatures are modeled as realizations from Gaussian processes. The latent Gaussian process that drives the precipitation occurrence process is modeled in the process layer. In the parameter layer, the model parameters of the data and process layers are modeled as spatially distributed Gaussian processes, consequently enabling the simulation of daily weather at arbitrary (unobserved) locations or on a regular grid. All model parameters are endowed with weakly informative prior distributions. The No‐U Turn sampler, an adaptive form of Hamiltonian Monte Carlo, is used to maximize the model likelihood function and obtain posterior samples of each parameter. Posterior samples of the model parameters propagate uncertainty to the weather simulations, an important feature that makes BayGEN unique compared to traditional weather generators. We demonstrate the utility of BayGEN with application to daily weather generation in a basin of the Argentine Pampas. Furthermore, we evaluate the implications of crop yield by driving a crop simulation model with weather simulations from BayGEN and an equivalent non‐Bayesian weather generator.more » « less
-
Global hydroclimate significantly differed from modern climate during the mid-Holocene (6 ka) and Last Glacial Maximum (21 ka). Consequently, both periods have been described as either a partial or reverse analogue for current climate change. To reconstruct past hydroclimate, an offline paleoclimate data assimilation methodology is applied to a dataset of 216 lake status records which provide relative estimates of water level change. The proxy observations are integrated with the climate dynamics of two transient simulations (TraCE-21ka and HadCM3) using a multivariate proxy system model (PSM) which estimates relative lake status from available climate simulation variables. The resulting DAMP-21ka (Data Assimilation of Moisture Patterns 21 000–0 BP) reanalysis reconstructs annual lake status and precipitation values at 500-year resolution and represents the first application of the methodology to global hydroclimate on timescales spanning the Holocene and longer. Validation using Pearson's correlation coefficients indicates that the reconstruction (0.24) is more skillful, on average, than model simulations (0.09), particularly in portions of North America and east Africa, where data density is high and proxy–model disagreement is prominent during the Holocene. Results of the PSM and assimilation are used to evaluate climatic controls on lake status, spatiotemporal patterns of moisture variability, and proxy–model disagreement. During the mid-Holocene, wetter conditions are reconstructed for northern and eastern Africa, Asia, and southern Australia, but in contrast to the model prior, negative anomalies are observed in North America, resulting in drier-than-modern conditions throughout the Northern Hemisphere midlatitudes. Proxy–model disagreement in western North America may reflect a bias in model simulations to stronger sea level pressure gradients in the North Pacific during the mid-Holocene. The data assimilation framework is able to reconcile these differences by integrating the constraints of proxy observations with the dynamics of the model prior to produce a more robust estimation of hydroclimate variability during the past 21 000 years.more » « less
An official website of the United States government

