Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M⊙) and high-mass (5 × 109<M*< 1011M⊙) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.
more »
« less
A Physically Motivated Framework to Compare the Merger Timescales of Isolated Low- and High-mass Galaxy Pairs Across Cosmic Time
Abstract The merger timescales of isolated low-mass pairs (108<M*< 5 × 109M⊙) on cosmologically motivated orbits have not yet been studied in detail, though isolated high-mass pairs (5 × 109<M*< 1011M⊙) have been studied extensively. It is common to apply the same separation criteria and expected merger timescales of high-mass pairs to low-mass systems, however, it is unclear if their merger timescales are similar, or if they evolve similarly with redshift. We use the Illustris TNG100 simulation to quantify the merger timescales of isolated low-mass and high-mass major pairs as a function of cosmic time, and explore how different selection criteria impact the mass and redshift dependence of merger timescales. In particular, we present a physically motivated framework for selecting pairs via a scaled separation criterion, wherein pair separations are scaled by the virial radius of the primary’s Friends-of-Friends (FoF) group halo (rsep< 1Rvir). Applying these scaled separation criteria yields equivalent merger timescales for both mass scales at all redshifts. Alternatively, static physical separation selections applied equivalently to all galaxy pairs at all redshifts lead to a difference in merger rate of up to ∼1 Gyr between low- and high-mass pairs, particularly forrsep< 150 kpc. As a result, applying the same merger timescales to physical-separation-selected pairs will lead to a bias that systematically overpredicts low-mass galaxy merger rates.
more »
« less
- Award ID(s):
- 1941096
- PAR ID:
- 10624083
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 975
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The majority of massive star-forming galaxies atz ∼ 2 have velocity gradients suggestive of rotation, in addition to large amounts of disordered motions. In this paper, we demonstrate that it is challenging to distinguish the regular rotation of a disk galaxy from the orbital motions of merging galaxies with seeing-limited data. However, the merger fractions atz ∼ 2 are likely too low for this to have a large effect on measurements of disk fractions. To determine how often mergers pass for disks, we look to galaxy formation simulations. We analyze ∼24,000 synthetic images and kinematic maps of 31 high-resolution simulations of isolated galaxies and mergers atz ∼ 2. We determine if the synthetic observations pass the criteria commonly used to identify disk galaxies and whether the results are consistent with their intrinsic dynamical states. Galaxies that are intrinsically mergers pass the disk criteria for anywhere from 0% to 100% of sightlines. The exact percentage depends strongly on the specific disk criteria adopted and weakly on the separation of the merging galaxies. Therefore, one cannot tell with certainty whether observations of an individual galaxy indicate a merger or a disk. To estimate the fraction of mergers passing as disks in current kinematics samples, we combine the probability that a merger will pass as a disk with theoretical merger fractions from a cosmological simulation. Taking the latter at face value, the observed disk fractions are overestimated by small amounts: at most by 5% at high stellar mass (1010–11M⊙) and 15% at low stellar mass (109–10M⊙).more » « less
-
Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M⊙, implying an effective stellar baryon fraction ofϵ⋆∼ 0.2−0.5, whereϵ⋆≡M⋆/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM⋆∼ 1010M⊙galaxies relative toM⋆∼ 109M⊙—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm.more » « less
-
Abstract Supermassive black holes (SMBHs) can grow through both accretion and mergers. It is still unclear how SMBHs evolve under these two channels from high redshifts to the SMBH population we observe in the local Universe. Observations can directly constrain the accretion channel but cannot effectively constrain mergers yet, while cosmological simulations provide galaxy merger information but can hardly return accretion properties consistent with observations. In this work, we combine the observed accretion channel and the simulated merger channel, taking advantage of observations and cosmological simulations, to depict a realistic evolution pattern of the SMBH population. With this methodology, we can derive the scaling relation between the black hole mass (MBH) and host-galaxy stellar mass (M⋆), and the local black hole mass function (BHMF). Our scaling relation is lower than those based on dynamically measuredMBH, supporting the claim that dynamically measured SMBH samples may be biased. We show that the scaling relation has little redshift evolution. The BHMF steadily increases fromz= 4 toz= 1 and remains largely unchanged fromz= 1 toz= 0. The overall SMBH growth is generally dominated by the accretion channel, with possible exceptions at high mass (MBH≳ 108M⊙orM⋆≳ 1011M⊙) and low redshift (z≲ 1). We also predict that around 25% of the total SMBH mass budget in the local Universe may be locked within long-lived, wandering SMBHs, and the wandering mass fraction and wandering SMBH counts increase withM⋆.more » « less
-
The formation of compact high-redshift star-forming clumps, along with the physical processes driving their evolution and their potential connection to present-day globular clusters (GCs), are key open questions in studies of galaxy formation. In this work, we aim to shed light on these aspects using the SImulating the Environment where Globular clusters Emerged (SIEGE) project, a suite of cosmological zoom-in simulations with subparsec resolution that is specifically designed to investigate the physical conditions behind the origin of compact stellar systems in high-redshift environments. The simulations analyzed in this study are focused on a dwarf galaxy with a virial mass of a few 109M⊙atz= 6.14, where the spatial resolution reaches 0.3 pc h−1. Individual stars are formed directly by sampling the initial mass function, with a 100% star formation efficiency. This setup is designed to explore the impact of a high star formation efficiency under high-redshift conditions. The simulation reveals the emergence of numerous stellar clumps with sizes of 1–3 pc, stellar surface densities up to almost 104M⊙pc−2, and masses predominantly spanning 103M⊙to several 104M⊙, with a few reaching 105M⊙and up to 106M⊙. All clumps form during intense, short bursts of star formation lasting less than a megayear, without noticeable signs of second peaks of star formation or accretion, often with negligible dark matter content (i.e., dark-to-stellar mass ratios below 1 within three times their effective radii). We measured a clear correlation between mass and size, with a clump mass function described by a power law with a slope of −2. Star formation conditions in the simulation reveal a behaviour that is similar to that of a feedback-free starburst scenario, where dense clumps form due to inefficient stellar feedback over small timescales. Notably, some clumps exhibit properties that closely resemble those of present-day globular clusters, highlighting their potential evolutionary connection.more » « less
An official website of the United States government

