skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 24, 2026

Title: Shaping the Milky Way: The Interplay of Mergers and Cosmic Filaments
Abstract The large-scale morphology of Milky Way (MW)–mass dark matter halos is shaped by two key processes: filamentary accretion from the cosmic web and interactions with massive satellites. Disentangling their contributions is essential for understanding galaxy evolution and constructing accurate mass models of the MW. We analyze the time-dependent structure of MW-mass halos from zoomed cosmological-hydrodynamical simulations by decomposing their mass distribution into spherical harmonic expansions. We find that the dipole and quadrupole moments dominate the gravitational power spectrum, encoding key information about the halo’s shape and its interaction with the cosmic environment. While the dipole reflects transient perturbations from infalling satellites and damps on dynamical timescales, the quadrupole—linked to the halo’s triaxiality—is a persistent feature. We show that the quadrupole’s orientation aligns with the largest filaments, imprinting a long-lived memory on the halo’s morphology even in its inner regions (∼30 kpc). At the virial radius, the quadrupole distortion can reach 1–2 times the spherical density, highlighting the importance of environment in shaping MW-mass halos. Using multichannel singular spectrum analysis, we successfully disentangle the effects of satellite mergers and filamentary accretion on quadrupole. We find that, compared to isolated MW–LMC simulations that typically use a spherical halo, the LMC-mass satellite induces a quadrupolar response that is an order of magnitude larger in our cosmological halo. This highlights the need for models that incorporate the MW’s asymmetry and time evolution, with direct consequences for observable structures such as disk warps, the LMC-induced wake, and stellar tracers—particularly in the era of precision astrometry.  more » « less
Award ID(s):
1941096 2307787
PAR ID:
10624085
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
988
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for. 
    more » « less
  2. Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake and collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers. 
    more » « less
  3. Abstract The first infall of the LMC into the Milky Way (MW) represents a large and recent disruption to the MW circumgalactic medium (CGM). In this work, we use idealized, hydrodynamical simulations of an MW-like CGM embedded in a dark matter halo with an infalling LMC-like satellite initialized with its own CGM to understand how the encounter is shaping the global physical and kinematic properties of the MW CGM. First, we find that the LMC drives order-unity enhancements in MW CGM density, temperature, and pressure due to a M 2 shock from the supersonic CGM–CGM collision. The resulting shock front extends from the LMC to beyond ∼R200,MW, amplifying column densities, X-ray brightness, thermal Sunyaev–Zeldovich distortion, and potentially synchrotron emission from cosmic rays over large angular scales across the southern hemisphere. Second, the MW’s reflex motion relative to its outer halo induces a dipole in CGM radial velocities, withvR ± 30–50 km s−1atR > 50 kpc in the northern and southern hemispheres, respectively, consistent with measurements in the stellar halo. Finally, ram pressure strips most of the LMC’s CGM, leaving ∼108−9Mwarm ionized gas along the past orbit of the LMC, moving at high radial and/or tangential velocities ∼50–100 kpc from the MW. Massive satellites like the LMC leave their mark on the CGM structure of their host galaxies, and signatures of such interactions may be observable in key all-sky tracers of the MW CGM and those of other massive galaxies. 
    more » « less
  4. Abstract In the Λ-Cold Dark Matter model of the universe, galaxies form in part through accreting satellite systems. Previous works have built an understanding of the signatures of these processes contained within galactic stellar halos. This work revisits that picture using seven Milky Way–like galaxies in the Latte suite of FIRE-2 cosmological simulations. The resolution of these simulations allows a comparison of contributions from satellites above M * ≳ 10 × 7 M ⊙ , enabling the analysis of observable properties for disrupted satellites in a fully self-consistent and cosmological context. Our results show that the time of accretion and the stellar mass of an accreted satellite are fundamental parameters that in partnership dictate the resulting spatial distribution, orbital energy, and [ α /Fe]-[Fe/H] compositions of the stellar debris of such mergers at present day. These parameters also govern the resulting dynamical state of an accreted galaxy at z = 0, leading to the expectation that the inner regions of the stellar halo ( R GC ≲ 30 kpc) should contain fully phase-mixed debris from both lower- and higher-mass satellites. In addition, we find that a significant fraction of the lower-mass satellites accreted at early times deposit debris in the outer halo ( R GC > 50 kpc) that are not fully phased-mixed, indicating that they could be identified in kinematic surveys. Our results suggest that, as future surveys become increasingly able to map the outer halo of our Galaxy, they may reveal the remnants of long-dead dwarf galaxies whose counterparts are too faint to be seen in situ in higher-redshift surveys. 
    more » « less
  5. ABSTRACT The orbits of satellite galaxies encode rich information about their histories. We investigate the orbital dynamics and histories of satellite galaxies around Milky Way (MW)-mass host galaxies using the FIRE-2 cosmological simulations, which, as previous works have shown, produce satellite mass functions and spatial distributions that broadly agree with observations. We first examine trends in orbital dynamics at z = 0, including total velocity, specific angular momentum, and specific total energy: the time of infall into the MW-mass halo primarily determines these orbital properties. We then examine orbital histories, focusing on the lookback time of first infall into a host halo and pericentre distances, times, and counts. Roughly 37 per cent of galaxies with $$M_{\rm star}\lesssim 10^7\, {\rm M}_{\odot }$$ were ‘pre-processed’ as a satellite in a lower-mass group, typically $$\approx 2.7\, {\rm Gyr}$$ before falling into the MW-mass halo. Half of all satellites at z = 0 experienced multiple pericentres about their MW-mass host. Remarkably, for most (67 per cent) of these satellites, their most recent pericentre was not their minimum pericentre: the minimum typically was ∼40 per cent smaller and occurred $$\sim 6\, {\rm Gyr}$$ earlier. These satellites with growing pericentres appear to have multiple origins: for about half, their specific angular momentum gradually increased over time, while for the other half, most rapidly increased near their first apocentre, suggesting that a combination of a time-dependent MW-mass halo potential and dynamical perturbations in the outer halo caused these satellites’ pericentres to grow. Our results highlight the limitations of idealized, static orbit modelling, especially for pericentre histories. 
    more » « less