skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Spatiotemporal Multiplex Network Model for Predicting Forced Outage Severity in Distribution Grids
Weather-related power disruptions present significant challenges to public infrastructure, societal well-being, and the distribution grid. Predicting outage durations in distribution grids is another challenge compared to transmission line outage durations due to distribution networks’ complexity and finer granularity. While forecasting forced power outages is crucial, accurately estimating their duration is essential for timely response and mitigation measures. This study introduces the Spatiotemporal Multiplex Network (SMN-WVF), a methodology designed to predict power outage durations across varying lead times, tackling the difficulties posed by small, high-complexity spaces within distribution grids. SMN-WVF employs multiplex networks that incorporate multi-modal data across both time and space, including layers such as power outages, weather conditions, weather forecasts, vegetation, and distances between substations. We demonstrate the importance of incorporating additional layers of data sources as they are shown to help the model’s predictions through gradual improvement in the macro F1 score performance.  more » « less
Award ID(s):
2125985
PAR ID:
10625005
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Iliadis, L; Maglogiannis, I; Kyriacou, E; Jayne, C
Publisher / Repository:
Springer Verlag
Date Published:
ISSN:
1860-9503
ISBN:
978-3-031-96198-4
Format(s):
Medium: X
Location:
the proceedings of the EAAAI / EANN 2025 conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Cherifi, H; Donduran, M; Rocha, LM; Cherifi, C; Varol, O (Ed.)
    Long power outages caused by weather can have a big impact on the economy, infrastructure, and quality of life in affected areas. It’s hard to provide early and accurate warnings for these disruptions because severe weather often leads to missing weather recordings, making it difficult to make learning-based predictions. To address this challenge, we have developed HMN-RTS, a hierarchical multiplex network that classifies disruption severity by temporal learning from integrated weather recordings and social media posts. This new framework’s multiplex network layers gather information about power outages, weather, lighting, land cover, transmission lines, and social media comments. Our study shows that this method effectively improves the accuracy of predicting the duration of weather-related outages. The HMN-RTS model improves 3 h ahead outage severity prediction, resulting in a 0.76 macro F1-score vs 0.51 for the best alternative for a five-class problem formulation. The HMN-RTS model provides useful predictions of outage duration 6 h ahead, enabling grid operators to implement outage mitigation strategies promptly. The results highlight the HMN-RTS’s ability to offer early, reliable, and efficient risk assessment. 
    more » « less
  2. The growing integration of distributed energy resources (DERs) in distribution grids raises various reliability issues due to DER's uncertain and complex behaviors. With large-scale DER penetration in distribution grids, traditional outage detection methods, which rely on customers report and smart meters' “last gasp” signals, will have poor performance, because renewable generators and storage and the mesh structure in urban distribution grids can continue supplying power after line outages. To address these challenges, we propose a data-driven outage monitoring approach based on the stochastic time series analysis with a theoretical guarantee. Specifically, we prove via power flow analysis that dependency of time-series voltage measurements exhibits significant statistical changes after line outages. This makes the theory on optimal change-point detection suitable to identify line outages. However, existing change point detection methods require post-outage voltage distribution, which are unknown in distribution systems. Therefore, we design a maximum likelihood estimator to directly learn distribution pa-rameters from voltage data. We prove the estimated parameters-based detection also achieves optimal performance, making it extremely useful for fast distribution grid outage identifications. Furthermore, since smart meters have been widely installed in distribution grids and advanced infrastructure (e.g., PMU) has not widely been available, our approach only requires voltage magnitude for quick outage identification. Simulation results show highly accurate outage identification in eight distribution grids with 17 configurations with and without DERs using smart meter data. 
    more » « less
  3. We assessed sociodemographic disparities in basic service disruptions caused by Winter Storm Uri in Texas. We collected data through a bilingual telephone survey conducted in July 2021 (n  = 753). Being Black, having children, and renting one’s residence were associated with longer power outage durations; being Black was also associated with longer water outages. Our findings highlight the need to plan for and ameliorate inequitable service outages and their attendant health risks in climate change–related extreme weather events such as Uri. (Am J Public Health. 2023;113(1):30–34. https://doi.org/10.2105/AJPH.2022.307110 ) 
    more » « less
  4. In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. 
    more » « less
  5. Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO. 
    more » « less