skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lab experiments of synthetic ice mélange, 2022-2024
### Access Dataset and extensive metadata can be accessed and downloaded via: [https://arcticdata.io/data/10.18739/A2CZ32678/](https://arcticdata.io/data/10.18739/A2CZ32678/) ### Overview A limited understanding of how glacier-ocean interactions lead to iceberg calving and melting at the ice-ocean boundary contributes to uncertainty in predictions of sea level rise. Dense packs of icebergs and sea ice, known as ice mélange, occur in many fjords in Greenland and Antarctica. Observations suggest that ice mélange may directly affect iceberg calving by pressing against the glacier front and indirectly affect glacier melting by controlling where and when icebergs melt which can impact ocean circulation and ocean heat transport towards glaciers. However, the interactions between ice mélange, ocean circulation, and iceberg calving have not been systematically investigated due to the difficulty of conducting field work in Greenland fjords. In order to investigate the dynamics of ice mélange (and other floating granular materials) and to inform development of ice mélange models, we conducted a series of laboratory experiments using synthetic icebergs (plastic blocks) that were pushed down a tank by a synthetic glacier. This data set consists of force measurements on the glacier terminus and time-lapse photographs of the experiments that were used for visualizing motion.  more » « less
Award ID(s):
2025692
PAR ID:
10625261
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
icebergs lab experiments ice melange
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The role of icebergs in narrow fjords hosting marine-terminating glaciers in Greenland is poorly understood, even though iceberg melt results in asubstantial freshwater flux that can exceed the subglacial discharge. Furthermore, the melting of deep-keeled icebergs modifies the verticalstratification of the fjord and, as such, can impact ice–ocean exchanges at the glacier front. We model an idealised representation of thehigh-silled Ilulissat Icefjord in West Greenland with the MITgcm ocean circulation model, using the IceBerg package to study the effect of submarineiceberg melt on fjord water properties over a runoff season, and compare our results with available observations from 2014. We find the subglacialdischarge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Furthermore, we find that melting oficebergs modifies the fjord in three main ways: first, icebergs cool and freshen the water column over their vertical extent; second, iceberg-melt-induced changes to fjord stratification cause the neutral buoyancy depth of the plume and the export of glacially modified waters to be deeper;third, icebergs modify the deep basin, below their vertical extent, by driving mixing of the glacially modified waters with the deep-basin watersand by modifying the incoming ambient waters. Through the combination of cooling and causing the subglacial-discharge-driven plume to equilibratedeeper, icebergs suppress glacier melting in the upper layer, resulting in undercutting of the glacier front. Finally, we postulate that the impactof submarine iceberg melt on the neutral buoyancy depth of the plume is a key mechanism linking the presence of an iceberg mélange with theglacier front, without needing to invoke mechanical effects. 
    more » « less
  2. Abstract. Field and remote sensing studies suggest that ice mélange influences glacier-fjord systems by exerting stresses on glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long time scales are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and stress transfer via force chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and that is suitable for long time-scale simulations. For parallel-sided fjords, the model exhibits two possible steady state solutions. When there is no calving of new icebergs or melting of previously calved icebergs, the ice mélange is pushed down fjord by the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential. When calving and melting are included, the ice mélange evolves to another steady state in which its location is fixed relative to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power law relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg calving flux. The increase in buttressing force with the calving flux, which depends on glacier thickness, appears to occur more rapidly than the force required to prevent the capsize of full-glacier-thickness icebergs, suggesting that glaciers with high calving fluxes may be more strongly influenced by ice mélange than those with small fluxes. 
    more » « less
  3. Field and remote sensing studies suggest that ice mélange influences glacier–fjord systems by exerting stresses on glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long timescales are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and exhibit stress transfer via force chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and that is suitable for long-timescale simulations. For parallel-sided fjords, the model exhibits two possible steady-state solutions. When there is no calving of icebergs or melting of previously calved icebergs, the ice mélange is pushed down-fjord by the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential. When calving and melting are included and treated as constants, the ice mélange evolves into another steady state in which its location is fixed relative to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power-law relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg calving flux. The buttressing force appears to increase with calving flux (i.e., glacier thickness) more rapidly than the force required to prevent the capsizing of full-glacier-thickness icebergs, suggesting that glaciers with high calving fluxes may be more strongly influenced by ice mélange than those with small fluxes. 
    more » « less
  4. Abstract Iceberg calving is a major contributor to Greenland’s ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge. Here we show that such quantification can be achieved with a single field measurement: thickness of mélange at the glacier terminus. We develop the first three-dimensional discrete element model of m´elange along with a simple analytical model to quantify the mélange buttressing using mélange thickness data from ArcticDEM over 32 Greenland glacier termini. We observed a strong seasonality in mélange thickness: thin mélange (averaged thickness 34+17−15m) in summertime when terminus retreats, and thick mélange (averaged thickness 119+31−37m) in wintertime when terminus advances. The observed seasonal changes of mélange thickness strongly coincide with observed Greenland calving dynamics and the modeled buttressing effects. 
    more » « less
  5. Abstract The Greenland Ice Sheet has undergone rapid mass loss over the last four decades, primarily through solid and liquid discharge at marine‐terminating outlet glaciers. The acceleration of these glaciers is in part due to the increase in temperature of ocean water in contact with the glacier terminus. However, quantifying heat transport to the glacier through fjord circulation can be challenging due to iceberg abundance, which threatens instrument survival and fjord accessibility. Here we utilize iceberg movement to infer upper‐layer fjord circulation, as freely floating icebergs (i.e., outside the mélange region) behave as natural drifters. In the summers of 2014 and 2019, we deployed transmitting GPS units on a total of 13 icebergs in Ilulissat Icefjord, an iceberg‐rich and historically data‐poor fjord in west Greenland, to quantify circulation over the upper 0–250 m of the water column. We find that the direction of upper‐layer fjord circulation is strongly impacted by the timing of tributary meltwater runoff, while the speed of this circulation changes in concert with glacier behavior, which includes increases and decreases in glacier speed and meltwater runoff. During periods of increased meltwater runoff entering from tributary fjords, icebergs at these confluences deviated from their down‐fjord trajectory, even reversing up‐fjord, until the runoff pulse subsided days later. This study demonstrates the utility of iceberg monitoring to constrain upper‐layer fjord circulation, and highlights the importance of including tributary fjords in predictive models of heat transport and fjord circulation. 
    more » « less