Real-time capture of nuclear motions influencing photoinduced electron transfer
                        
                    
    
            Although vibronic coupling phenomena have been recognized in the excited state dynamics of transition metal complexes, their impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor–acceptor complex featuring a cyclometalated Pt(II) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(II) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their p-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10625317
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 15
- Issue:
- 36
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 14766 to 14777
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt( ii )–Pt( ii ) dimer to the corresponding Pt( ii )–Pt( iii )–H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt( ii )–Pt( ii ) dimer in a particularly reactive conformation that promotes hydrogen formation.more » « less
- 
            In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of electronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quantum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between reactant and product electron–proton vibronic states. The rate constant is expressed as a summation over these vibronic states, and the contribution of each pair of vibronic states depends on the square of the vibronic coupling as well as the spectral convolution integral, which can be viewed as a generalization of the Förster-type spectral overlap integral for vibronic rather than electronic states. The convolution integral also accounts for the common vibrational modes shared by the donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model systems to investigate the key features of PCEnT processes. The excited vibronic states can contribute significantly to the total PCEnT rate constant, and the common modes can either slow down or speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there is no apparent overlap between the donor emission and acceptor absorption spectra. This theory will assist in the interpretation of experimental data and will guide the design of additional PCEnT systems.more » « less
- 
            Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before.more » « less
- 
            Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    