skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating Ice Water Content for Winter Storms from Millimeter-Wavelength Radar Measurements Using a Synthesis of Polarimetric and Dual-Frequency Radar Observations
Abstract The potential of millimeter-wavelength radar-based ice water content (IWC) estimation is demonstrated using a Ka-band Scanning Polarimetric Radar (KASPR) for the U.S. northeast coast winter storms. Two IWC relations for Ka-band polarimetric radar measurements are proposed: one that uses a combination of the radar reflectivityZand the estimated total number concentration of snow particlesNtand the other based on the joint use ofZ, specific differential phaseKDP, and the degree of rimingfrim. A key element of the algorithms is to obtain the “Rayleigh-equivalent” value ofZmeasured at the Ka band, i.e., the correspondingZat a longer radar wavelength for which Rayleigh scattering takes place. This is achieved via polarimetric retrieval of the mean volume diameterDmand incorporating the relationship between the dual-wavelength ratio DWRS/KaandDm. Those techniques allow for retrievals from single millimeter-wavelength radar measurements and do not necessarily require the dual-wavelength ratio (DWR) measurements, if the DWR–Dmrelation and Rayleigh assumption for Ka-bandKDPare valid. Comparison between the quasivertical profile product obtained from KASPR and the columnar vertical profile product generated from the nearby WSR-88D S-band radar measurements demonstrates that the DWRS/Kacan be estimated from the two close radars without the need for collocated radar beams and synchronized antenna scanning and can be used for determining the Rayleigh-equivalent value ofZ. The performance of the suggested techniques is evaluated for seven winter storms using surface disdrometer and snow accumulation measurements. Significance StatementIce water content (IWC) estimation using millimeter-wavelength radar measurements has been challenging for decades, because of the complexity of snow particle properties and size, which can cause complex scattering at the shorter radar wavelengths. The suggested polarimetric techniques overcome this difficulty via utilizing specific differential phaseKDPwhich is higher at millimeter wavelengths than at centimeter wavelengths. This study proposes new IWC relationships for Ka-band polarimetric radar measurements and evaluates them using a Ka-band Scanning Polarimetric Radar (KASPR) and a nearby NEXRAD (S-band) polarimetric radar for the U.S. northeast coast winter storms. The proposed techniques can be applied to other millimeter-wavelength radars and shed light on the millimeter-wavelength polarimetric radar IWC estimation.  more » « less
Award ID(s):
2113070
PAR ID:
10625322
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
42
Issue:
1
ISSN:
0739-0572
Page Range / eLocation ID:
75 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In a 2018 paper by Bukovčić et al., polarimetric bivariate power-law relations for estimating snowfall rate S and ice water content (IWC), and , were developed utilizing 2D video disdrometer snow measurements in Oklahoma. Herein, these disdrometer-based relations are generalized for the range of particle aspect ratios from 0.5 to 0.8 and the width of the canting angle distribution from 0° to 40° and are validated via analytical/theoretical derivations and simulations. In addition, a novel S ( K DP , Z dr ) polarimetric relation utilizing the ratio between specific differential phase K DP and differential reflectivity Z dr , , is derived. Both K DP and are proportionally affected by the ice particles’ aspect ratio and width of the canting angle distribution; therefore, the variables’ ratio tends to be almost invariant to the changes in these parameters. The S ( K DP , Z ) and S ( K DP , Z dr ) relations are applied to the polarimetric S-band WSR-88D data obtained from three geographical locations in Virginia, Oklahoma, and Colorado, and their performance is compared with estimations from the standard S ( Z ) relations and ground snow measurements. The polarimetric estimates of snow accumulations from the three cases exhibit smaller bias in comparison with the S ( Z ), indicating good potential for more reliable radar snow measurements. 
    more » « less
  2. Abstract Dual-frequency millimeter-wavelength radar observations in snowfall are analyzed in order to evaluate differences in conventional polarimetric radar variables such as differential reflectivity ( Z DR ) specific differential phase shift ( K DP ) and linear depolarization ratio (LDR) at traditional cloud radar frequencies at Ka and W bands (~35 and ~94 GHz, correspondingly). Low radar beam elevation (~5°) measurements were performed at Oliktok Point, Alaska, with a scanning fully polarimetric radar operating in the horizontal–vertical polarization basis. This radar has the same gate spacing and very close beam widths at both frequencies, which largely alleviates uncertainties associated with spatial and temporal data matching. It is shown that observed Ka- and W-band Z DR differences are, on average, less than about 0.5 dB and do not have a pronounced trend as a function of snowfall reflectivity. The observed Z DR differences agree well with modeling results obtained using integration over nonspherical ice particle size distributions. For higher signal-to-noise ratios, K DP data derived from differential phase measurements are approximately scaled as reciprocals of corresponding radar frequencies indicating that the influence of non-Rayleigh scattering effects on this variable is rather limited. This result is also in satisfactory agreement with data obtained by modeling using realistic particle size distributions. Observed Ka- and W-band LDR differences are strongly affected by the radar hardware system polarization “leak” and are generally less than 4 dB. Smaller differences are observed for higher depolarizations, where the polarization “leak” is less pronounced. Realistic assumptions about particle canting and the system polarization isolation lead to modeling results that satisfactorily agree with observational dual-frequency LDR data. 
    more » « less
  3. Abstract. Radar dual-wavelength ratio (DWR) measurements from the Stony Brook RadarObservatory Ka-band scanning polarimetric radar (KASPR, 35 GHz), a W-bandprofiling radar (94 GHz), and a next-generation K-band (24 GHz) micro rainradar (MRRPro) were exploited for ice particle identification using triple-frequency approaches. The results indicated that two of the radarfrequencies (K and Ka band) are not sufficiently separated; thus, thetriple-frequency radar approaches had limited success. On the other hand, ajoint analysis of DWR, mean Doppler velocity (MDV), andpolarimetric radar variables indicated potential in identifying ice particletypes and distinguishing among different ice growth processes and even inrevealing additional microphysical details. We investigated all DWR pairs in conjunction with MDV from the KASPRprofiling measurements and differential reflectivity (ZDR) and specificdifferential phase (KDP) from the KASPR quasi-vertical profiles. TheDWR-versus-MDV diagrams coupled with the polarimetric observables exhibiteddistinct separations of particle populations attributed to different rimedegrees and particle growth processes. In fallstreaks, the 35–94 GHz DWRpair increased with the magnitude of MDV corresponding to the scatteringcalculations for aggregates with lower degrees of riming. The DWR valuesfurther increased at lower altitudes while ZDR slightly decreased,indicating further aggregation. Particle populations with higher rimedegrees had a similar increase in DWR but a 1–1.5 m s−1 largermagnitude of MDV and rapid decreases in KDP and ZDR. The analysisalso depicted the early stage of riming where ZDR increased with theMDV magnitude collocated with small increases in DWR. This approach willimprove quantitative estimations of snow amount and microphysical quantitiessuch as rime mass fraction. The study suggests that triple-frequencymeasurements are not always necessary for in-depth ice microphysical studiesand that dual-frequency polarimetric and Doppler measurements cansuccessfully be used to gain insights into ice hydrometeor microphysics. 
    more » « less
  4. Abstract Quasi-vertical profiles (QVPs) of polarimetric radar data have emerged as a powerful tool for studying precipitation microphysics. Various studies have found enhancements in specific differential phase K dp in regions of suspected secondary ice production (SIP) due to rime splintering. Similar K dp enhancements have also been found in regions of sublimating snow, another proposed SIP process. This work explores these K dp signatures for two cases of sublimating snow using nearly collocated S- and Ka-band radars. The presence of the signature was inconsistent between the radars, prompting exploration of alternative causes. Idealized simulations are performed using a radar beam-broadening model to explore the impact of nonuniform beam filling (NBF) on the observed reflectivity Z and K dp within the sublimation layer. Rather than an intrinsic increase in ice concentration, the observed K dp enhancements can instead be explained by NBF in the presence of sharp vertical gradients of Z and K dp within the sublimation zone, which results in a K dp bias dipole. The severity of the bias is sensitive to the Z gradient and radar beamwidth and elevation angle, which explains its appearance at only one radar. In addition, differences in scanning strategies and range thresholds during QVP processing can constructively enhance these positive K dp biases by excluding the negative portion of the dipole. These results highlight the need to consider NBF effects in regions not traditionally considered (e.g., in pure snow) due to the increased K dp fidelity afforded by QVPs and the subsequent ramifications this has on the observability of sublimational SIP. Significance Statement Many different processes can cause snowflakes to break apart into numerous tiny pieces, including when they evaporate into dry air. Purported evidence of this phenomenon has been seen in data from some weather radars, but we noticed it was not seen in data from others. In this work we use case studies and models to show that this signature may actually be an artifact from the radar beam becoming too big and there being too much variability of the precipitation within it. While this breakup process may actually be occurring in reality, these results suggest we may have trouble observing it with typical weather radars. 
    more » « less
  5. Abstract The discovery of a polarimetric radar signature indicative of hydrometeor refreezing has shown promise in its utility to identify periods of ice pellet production. Uniquely characterized well below the melting layer by locally enhanced values of differential reflectivity ( Z DR ) within a layer of decreasing radar reflectivity factor at horizontal polarization ( Z H ), the signature has been documented in cases where hydrometeors were completely melted prior to refreezing. However, polarimetric radar features associated with the refreezing of partially melted hydrometeors have not been examined as rigorously in either an observational or microphysical modeling framework. Here, polarimetric radar data—including vertically pointing Doppler spectral data from the Ka-band Scanning Polarimetric Radar (KASPR)—are analyzed for an ice pellets and rain mixture event where the ice pellets formed via the refreezing of partially melted hydrometeors. Observations show that no such distinct localized Z DR enhancement is present, and that values instead decrease directly beneath enhanced values associated with melting. A simplified, explicit bin microphysical model is then developed to simulate the refreezing of partially melted hydrometeors, and coupled to a polarimetric radar forward operator to examine the impacts of such refreezing on simulated radar variables. Simulated vertical profiles of polarimetric radar variables and Doppler spectra have similar features to observations, and confirm that a Z DR enhancement is not produced. This suggests the possibility of two distinct polarimetric features of hydrometeor refreezing: ones associated with refreezing of completely melted hydrometeors, and those associated with refreezing of partially melted hydrometeors. Significance Statement There exist two pathways for the formation of ice pellets: refreezing of fully melted hydrometeors, and refreezing of partially melted hydrometeors. A polarimetric radar signature indicative of fully melted hydrometeor refreezing has been extensively documented in the past, yet no study has documented the refreezing of partially melted hydrometeors. Here, observations and idealized modeling simulations are presented to show different polarimetric radar features associated with partially melted hydrometeor refreezing. The distinction in polarimetric features may be beneficial to identifying layers of supercooled liquid drops within transitional winter storms. 
    more » « less