skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Topological Offsets
We introduceTopological Offsets, a novel approach to generate manifold and self-intersection-free offset surfaces that are topologically equivalent to an offset infinitesimally close to the surface. Our approach, by construction, creates a manifold, watertight, and self-intersection-free offset surface strictly enclosing the input, while doing a best effort to move it to a prescribed distance from the input. Differently from existing approaches, we embed the input in a background mesh and insert a topological offset around the input with purely combinatorial operations. The topological offset is then inflated/deflated to match the user-prescribed distance while enforcing that no intersections or non-manifold configurations are introduced. We evaluate the effectiveness and robustness of our approach on the Thingi10k dataset, and show that topological offsets are beneficial in multiple graphics applications, including (1) converting non-manifold surfaces to manifold ones, (2) creating layered offsets, and (3) reliably computing finite offsets.  more » « less
Award ID(s):
2313156
PAR ID:
10625363
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
44
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many geometry processing techniques require the solution of partial differential equations (PDEs) on manifolds embedded in\(\mathbb {R}^2 \)or\(\mathbb {R}^3 \), such as curves or surfaces. Suchmanifold PDEsoften involve boundary conditions (e.g., Dirichlet or Neumann) prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold. However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite element-type techniques or derive specialized discretization procedures for each distinct manifold representation. We propose instead to address such problems in a unified manner through a novel extension of theclosest point method(CPM) to handle interior boundary conditions. CPM solves the manifold PDE by solving a volumetric PDE defined over the Cartesian embedding space containing the manifold, and requires only a closest point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding space across interior boundaries. CPM’s finite difference and interpolation stencils are adapted to respect this partition while preserving second-order accuracy. Additionally, we develop an efficient sparse-grid implementation and numerical solver that can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: diffusion curves on surfaces, geodesic distance, tangent vector field design, harmonic map construction, and reaction-diffusion textures. Our proposed approach thus offers a powerful and flexible new tool for a range of geometry processing tasks on general manifold representations. 
    more » « less
  2. We introduce a method for approximating the signed distance function (SDF) of geometry corrupted by holes, noise, or self-intersections. The method implicitly defines a completed version of the shape, rather than explicitly repairing the given input. Our starting point is a modified version of theheat methodfor geodesic distance, which diffuses normal vectors rather than a scalar distribution. This formulation provides robustness akin togeneralized winding numbers (GWN), but provides distance function rather than just an inside/outside classification. Our formulation also offers several features not common to classic distance algorithms, such as the ability to simultaneously fit multiple level sets, a notion of distance for geometry that does not topologically bound any region, and the ability to mix and match signed and unsigned distance. The method can be applied in any dimension and to any spatial discretization, including triangle meshes, tet meshes, point clouds, polygonal meshes, voxelized surfaces, and regular grids. We evaluate the method on several challenging examples, implementing normal offsets and other morphological operations directly on imperfect curve and surface data. In many cases we also obtain an inside/outside classification dramatically more robust than the one obtained provided by GWN. 
    more » « less
  3. This article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE^2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D -> higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE^2 -space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics. 
    more » « less
  4. In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve, and a collection of disjoint normal curves, there is a polynomial-time algorithm to decide if the curve lies in the normal subgroup generated by components of the normal curves in the fundamental group of the surface after attaching the curves to a basepoint. 
    more » « less
  5. We present an efficient, trivially parallelizable algorithm to compute offset surfaces of shapes discretized using a dexel data structure. Our algorithm is based on a two-stage sweeping procedure that is simple to implement and efficient, entirely avoiding volumetric distance field computations typical of existing methods. Our construction is based on properties of half-space power diagrams, where each seed is only visible by a half space, which were never used before for the computation of surface offsets. The primary application of our method is interactive modeling for digital fabrication. Our technique enables a user to interactively process high-resolution models. It is also useful in a plethora of other geometry processing tasks requiring fast, approximate offsets, such as topology optimization, collision detection, and skeleton extraction. We present experimental timings, comparisons with previous approaches, and provide a reference implementation in the supplemental material. 
    more » « less