Expansion of shrubs has been observed in a number of biomes and in response to diverse global change drivers. Noting shrub expansion in coastal forests affected by sea level rise, we began to monitor shrub populations in a transgressing loblolly pine forest in coastal Virginia. Forest study plots spanned a gradient of salinity and progression toward a ghost forest state, from high forest with a relatively closed canopy, to mid and low forest, where there were few remaining live canopy trees. Shrubs of the species Morella cerifera were censused for 3 years from 2019 to 2021. Shrub distributions were compared to distributions of the invasive grass Phragmites australis to test if competition with this invasive species played a role in the observed shrub distribution. Shrubs were most abundant in the mid forest, whereas P. australis was most abundant in the low forest, but we did not detect a negative correlation between changes in occupancy of P. australis and shrubs. Rapid growth of shrubs in the mid and high forest radically changed the forest understory structure during the study period. Basal area of shrubs in the mid and high forest tripled, and shrub occupancy increased from 45 to 66% in the high forest, with high patchiness between plots. A flooding event salinized the site in late 2019, during the study. Following the flood, soil porewater salinities in the low forest remained above levels known to cause mortality in M. cerifera for several months. We postulate that high salinity, rather than competition with P. australis , filters M. cerifera from the low forest, whereas moderate salinity in the mid and high forest favors M. cerifera growth and expansion. The increase in shrubs appears to be a hallmark of salt-affected maritime forest, with the shrub front occurring in advance of other indicators of transgression such as P. australis invasion.
more »
« less
Shifts in light availability driven by dieback across a marsh‐forest gradient
Abstract Ecological zonation in coastal forests is driven by sea level rise and storm‐surge events. Mature trees that can survive moderately saline conditions show signs of stress when soil salinity increases above its tolerance levels. As leaf burn, foliar damage, and defoliation reduce tree canopy cover, light gaps form within the crown. At the forest‐marsh edge, canopy cover loss is most severe; trunks of dead trees without canopies form “ghost forests.” Canopy thinning and light from the edge alter conditions for understory vegetation, promoting the growth of shrubs and facilitating establishment and spread of invasive species that were previously limited by light competition. In this research, we present an analysis of illuminance and temperature in a coastal forest transitioning to a salt marsh. Light sensors above the ground surface were used to measure light attenuation of trees and understory vegetation and to observe the effect of reduced canopies at the forest‐marsh edge. Farther from the marsh, where salinity is lower and trees are healthy, dense canopies attenuate light. We estimate that during the growing season, tree canopies intercept 50% of illuminance on average. Closer to the marsh, canopy thinning, and tree death allow greater light penetration from above, as well as from the adjacent marsh. These illuminance values are further increased by light penetration from the forest‐marsh edge (edge effect). Here, higher illuminance may permitPhragmites australisexpansion. At intermediate locations, trees intercept between 32% and 49% of light and the understory shrubMorella ceriferaintercepts a further 45% of penetrating light based on comparisons of illuminance above and below shrub canopies. Light penetration from the edge can also be felt. The presence ofM. ceriferareduces the air temperature close to the soil surface, creating a cooler summer microclimate. The tree health state is reflected in the canopy size. The canopy patterns and the edge effect are responsible for light availability distribution along forest‐marsh gradients, consequently affecting the understory vegetation biomass. We conclude that during forest retreat driven by sea level rise, tree dieback increases light availability favoring the temporary encroachment ofPh. australisandM. ceriferain the understory.
more »
« less
- Award ID(s):
- 2012322
- PAR ID:
- 10625370
- Publisher / Repository:
- Wiley Periodicals LLC on behalf of The Ecological Society of America
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 15
- Issue:
- 10
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests.more » « less
-
null (Ed.)Small-scale treefall gaps are among the most important forms of forest disturbance in tropical forests. These gaps expose surrounding trees to more light, promoting rapid growth of understory plants. However, the effects of such small-scale disturbances on the distribution of plant water use across tree canopy levels are less known. To address this, we explored plant transpiration response to the death of a large emergent tree, Mortoniodendron anisophyllum Standl. & Steyerm (DBH > 220 cm; height ~40 m). Three suppressed, four mid-story, and two subdominant trees were selected within a 50 × 44 m premontane tropical forest plot at the Texas A&M Soltis Center for Research and Education located in Costa Rica. We compared water use rates of the selected trees before (2015) and after (2019) the tree gap using thermal dissipation sap flow sensors. Hemispherical photography indicated a 40% increase in gap fraction as a result of changes in canopy structure after the treefall gap. Micrometeorological differences (e.g., air temperature, relative humidity, and vapor pressure deficit (VPD)) could not explain the observed trends. Rather, light penetration, as measured by sensors within the canopy, increased significantly in 2019. One year after the tree fell, the water usage of trees across all canopy levels increased modestly (15%). Moreover, average water usage by understory trees increased by 36%, possibly as a result of the treefall gap, exceeding even that of overstory trees. These observations suggest the possible reallocation of water use between overstory and understory trees in response to the emergent tree death. With increasing global temperatures and shifting rainfall patterns increasing the likelihood of tree mortality in tropical forests, there is a greater need to enhance our understanding of treefall disturbances that have the potential to redistribute resources within forests.more » « less
-
Abstract Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf‐level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species,Guarea guidoniaandOcotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature ofOcoteaunderstory leaf photosynthetic electron transport shifted upward. There was noOcotearespiratory treatment effect, whileGuarearespiratory temperature sensitivity (Q10) was down‐regulated in heated leaves. The optimum temperatures for photosynthesis (Topt) decreased 3–5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations.Guareaupper canopyToptwas similar to the mean daytime temperatures, whileOcoteacanopy leaves often operated aboveTopt. With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2uptake, which could weaken the overall carbon sink strength of this tropical forest.more » « less
-
ABSTRACT Whistling thorn acacia (Acacia(Vachellia)drepanolobium) forms nearly monospecific stands among woody species in black cotton soils in East Africa arid highlands. The tree defends itself against large mammal herbivores with spinescence and symbiotic ants. While these defenses have been extensively studied, little is known about the extent to whichA. drepanolobiumdefense may benefit other plants growing in close association. We examined variation in herbaceous vegetation height, biomass, and composition between areas underneathA. drepanolobiumcanopies and the adjacent matrix in both fenced herbivore exclosures and unfenced areas. In unfenced areas, there was more tall herbaceous vegetation and biomass underneath tree canopies than away from tree canopies, while these differences were not significant in fenced exclosures. Both height and biomass of understory vegetation were negatively correlated withA. drepanolobiumcanopy height. Species richness was higher underneath tree canopies in both fenced and unfenced locations. In the unfenced locations, species evenness was lower underneath tree canopies than in the surrounding matrix, but the opposite was true in the fenced herbivore exclosures. The differences in herbaceous vegetation composition (Bray–Curtis dissimilarity index) between underneath tree and off tree locations were more pronounced in the unfenced areas than within the fenced herbivore exclosures. Our findings suggest that highly defended trees may moderate herbivore effects on herbaceous vegetation. To the extent that herbaceous vegetation underneath trees experiences protection from herbivory, such refugia microhabitats may serve as recolonization nuclei in attempts to restore chronically overgrazed systems.more » « less
An official website of the United States government

