Interactions between crawling cells, which are essential for many biological processes, can be quantified by measuring cell–cell collisions. Conventionally, experiments of cell–cell collisions are conducted on two-dimensional flat substrates, where colliding cells repolarize and move away upon contact with one another in ‘‘contact inhibition of locomotion’’ (CIL). Inspired by recent experiments that show cells on suspended nanofibers have qualitatively different CIL behaviors than those on flat substrates, we develop a phase field model of cell motility and two-cell collisions in fiber geometries. Our model includes cell–cell and cell–fiber adhesion, and a simple positive feedback mechanism of cell polarity. We focus on cell collisions on two parallel fibers, finding that larger cell deformability (lower membrane tension), larger positive feedback of polarization, and larger fiber spacing promote more occurrences of cells walking past one another. We can capture this behavior using a simple linear stability analysis on the cell–cell interface upon collision.
more »
« less
Implementation of actin polymerization and depolymerization in a two-dimensional cell migration model and its implications on mammalian cell morphology and velocity
- Award ID(s):
- 2303648
- PAR ID:
- 10625477
- Publisher / Repository:
- Elsevier Ltd.
- Date Published:
- Journal Name:
- Journal of Theoretical Biology
- Volume:
- 596
- Issue:
- C
- ISSN:
- 0022-5193
- Page Range / eLocation ID:
- 111977
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Successful development of tissue structures requires different collective cell migration patterns or phenotypes. Two examples of collective migration phenotypes in epithelial morphogenic processes, such as tubulogenesis, are rotational and invasive. Rotational collective migration phenotypes (RCM) typically lead to acinar structures, and invasive collective migration (ICM) phenotypes lead to duct-like structures. How cells adopt these different phenotypes is still largely unknown. Here, we investigate how cell–cell adhesion marker P-cadherin (CDH3) and mechanical cell–matrix interactions, including matrix deformations, protrusions, and focal adhesions, control rotational or invasive phenotypes during tubulogenesis. To accomplish our objective, we created a custom 3D microfluidic assay to perform live-cell imaging of epithelial clusters or cysts [wild-type (WT) and CDH3-depleted (CDH3-/-)] undergoing tubulogenesis, while simultaneously measuring matrix deformation rates. Our findings reveal WT epithelial cysts maintain rotational phenotypes, but transition to an invasive phenotype to undergo tubulogenesis. Furthermore, we demonstrate ICM phenotypes correlate with higher matrix deformation rates compared to rotational phenotypes. Our studies reveal CDH3 is required for epithelial cysts to transition from rotational to ICM phenotypes, associated with decreased matrix deformation rates. Without CDH3, epithelial cysts lose their ability to adopt ICM phenotypes, which can be rescued by RhoA activation. Finally, we demonstrate that the RhoA-rescued ICM phenotype is mediated, in part, by increased matrix deformation rates and vinculin recruitment to focal adhesion sites.more » « less
-
Abstract Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactors that accurately represent known heteromeric molecular complexes. We then develop CellChat, a tool that is able to quantitatively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applying CellChat to mouse and human skin datasets shows its ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer (http://www.cellchat.org/) will help discover novel intercellular communications and build cell-cell communication atlases in diverse tissues.more » « less
An official website of the United States government

