This letter studies how a stochastic gradient algorithm (SG) can be controlled to hide the estimate of the local stationary point from an eavesdropper. Such prob- lems are of significant interest in distributed optimization settings like federated learning and inventory management. A learner queries a stochastic oracle and incentivizes the oracle to obtain noisy gradient measurements and per- form SG. The oracle probabilistically returns either a noisy gradient of the function or a non-informative measure- ment, depending on the oracle state and incentive. The learner’s query and incentive are visible to an eavesdropper who wishes to estimate the stationary point. This letter formulates the problem of the learner performing covert optimization by dynamically incentivizing the stochastic oracle and obfuscating the eavesdropper as a finite-horizon Markov decision process (MDP). Using conditions for interval-dominance on the cost and transition probability structure, we show that the optimal policy for the MDP has a monotone threshold structure. We propose searching for the optimal stationary policy with the threshold structure using a stochastic approximation algorithm and a multi– armed bandit approach. The effectiveness of our methods is numerically demonstrated on a covert federated learning hate-speech classification task.
more »
« less
This content will become publicly available on March 28, 2026
Adaptive Incentive Design for Markov Decision Processes with Unknown Rewards
Incentive design, also known as model design or environment design for Markov decision processes(MDPs), refers to a class of problems in which a leader can incentivize his follower by modifying the follower's reward function, in anticipation that the follower's optimal policy in the resulting MDP can be desirable for the leader's objective. In this work, we propose gradient-ascent algorithms to compute the leader's optimal incentive design, despite the lack of knowledge about the follower's reward function. First, we formulate the incentive design problem as a bi-level optimization problem and demonstrate that, by the softmax temporal consistency between the follower's policy and value function, the bi-level optimization problem can be reduced to single-level optimization, for which a gradient-based algorithm can be developed to optimize the leader's objective. We establish several key properties of incentive design in MDPs and prove the convergence of the proposed gradient-based method. Next, we show that the gradient terms can be estimated from observations of the follower's best response policy, enabling the use of a stochastic gradient-ascent algorithm to compute a locally optimal incentive design without knowing or learning the follower's reward function. Finally, we analyze the conditions under which an incentive design remains optimal for two different rewards which are policy invariant. The effectiveness of the proposed algorithm is demonstrated using a small probabilistic transition system and a stochastic gridworld.
more »
« less
- Award ID(s):
- 2207759
- PAR ID:
- 10625686
- Editor(s):
- Poupart, Pascal
- Publisher / Repository:
- Journal of Machine Learning Research, Inc.
- Date Published:
- Journal Name:
- Transactions on Machine Learning Research
- ISSN:
- 2835-8856
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor goes to 1, and moreover when it is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.more » « less
-
The difficulty in specifying rewards for many real world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator’s reward function.more » « less
-
Stochastic Gradient Descent (SGD) has played a central role in machine learning. However, it requires a carefully hand-picked stepsize for fast convergence, which is notoriously tedious and time-consuming to tune. Over the last several years, a plethora of adaptive gradient-based algorithms have emerged to ameliorate this problem. In this paper, we propose new surrogate losses to cast the problem of learning the optimal stepsizes for the stochastic optimization of a non-convex smooth objective function onto an online convex optimization problem. This allows the use of no-regret online algorithms to compute optimal stepsizes on the fly. In turn, this results in a SGD algorithm with self-tuned stepsizes that guarantees convergence rates that are automatically adaptive to the level of noise.more » « less
-
In traditional reinforcement learning (RL), the learner aims to solve a single objective optimization problem: find the policy that maximizes expected reward. However, in many real-world settings, it is important to optimize over multiple objectives simultaneously. For example, when we are interested in fairness, states might have feature annotations corresponding to multiple (intersecting) demographic groups to whom reward accrues, and our goal might be to maximize the reward of the group receiving the minimal reward. In this work, we consider a multi-objective optimization problem in which each objective is defined by a state-based reweighting of a single scalar reward function. This generalizes the problem of maximizing the reward of the minimum reward group. We provide oracle-efficient algorithms to solve these multi-objective RL problems even when the number of objectives is exponentially large-for tabular MDPs, as well as for large MDPs when the group functions have additional structure. Finally, we experimentally validate our theoretical results and demonstrate applications on a preferential attachment graph MDP.more » « less
An official website of the United States government
