The conversion of methane, CH4, into higher value chemicals using low temperature plasmas is challenged by both improving efficiency and selectivity. One path towards selectivity is capturing plasma produced methyl radicals, CH3, in a solvent for aqueous processing. Due to the rapid reactions of methyl radicals in the gas phase, the transport distance from production of the CH3 to its solvation should be short, which then motivates the use of microplasmas. The generation of CH3 in Ar/CH4/H2O plasmas produced in nanosecond pulsed dielectric barrier discharge microplasmas is discussed using results from a computational investigation. The microplasma is sustained in the channel of a microfluidic chip in which the solvent flows along one wall or in droplets. CH3 is primarily produced by electron-impact of and dissociative excitation transfer to CH4, as well as CH2 reacting with CH4. CH3 is rapidly consumed to form C2H6 which, in spite of being subject to these same dissociative processes, accumulates over time, as do other stable products including C3H8 and CH¬3OH. The gas mixture and electrical properties were varied to assess their effects on CH3 production. CH3 production is largest with 5% CH4 in the Ar/CH4/H2O mixture due to an optimal balance of electron-impact dissociation, which increases with CH4 percentage, and dissociative excitation transfer and CH2 reacting with CH4, which decrease with CH4 percentage. Design parameters of the microchannels were also investigated. Increasing the permittivity of the dielectrics in contact with the plasma increased the ionization wave intensity which increased CH3 production. Increased energy deposition per pulse generally increased CH3 production as does lengthening pulse length up to a certain point. The arrangement of the solvent flow in the microchannel can also affect the CH3 density and fluence to the solvent. The fluence of CH3 to the liquid solvent is increased if the liquid is immersed in the plasma as a droplet or is a layer on the wall where the ionization wave terminates. The solvation dynamics of CH3 with varying numbers of droplets was also examined. The maximum density of solvated methyl radicals CH3aq occurs with a large number of droplets in the plasma. However, the solvated CH3aq density can rapidly decrease due to desolvation, emphasizing the need to quickly react the solvated species in the solvent. 
                        more » 
                        « less   
                    This content will become publicly available on January 7, 2026
                            
                            Oxygenates production in a microfluidic dielectric barrier discharge device sustained in Ar/CH4/O2
                        
                    
    
            Reforming of methane (CH4) is a process to produce syngas (CO/H2) and other value-added chemicals including oxygenates such as methanol (CH3OH). Atmospheric pressure plasmas have the potential to be more energy efficient than traditional reforming methods as value-added chemicals can be synthesized directly in the plasma without requiring an additional step. In this paper, we discuss the results from a computational investigation of the formation of oxygenates by CH4 oxidation in the presence of Ar, including CH3OH and CH2O, in a nanosecond pulsed dielectric barrier discharge. The plasma is formed in a microfluidic channel whose small dimensions are ideal for plasma formation at atmospheric pressure. The production and consumption mechanisms of dominant radicals and long-lived species are discussed in detail for the base case conditions of Ar/CH4/O2 = 50/25/25. CH3OH is produced primarily by CH3O reacting with CH3O and CH3O2 reacting with OH, while CH2O formation relies on reactions involving CH3O and CH3. The most abundant oxygenate formed is CO (produced by H abstraction from CHO). However, the greenhouse gas CO2 is also formed as a by-product. The effects of gas mixture are examined to maximize the CH3OH and CH2O densities while decreasing the CO2 density. Increasing the Ar percentage from 0% to 95% decreased the CH3OH and CH2O densities. At low Ar percentages, this is due to an increase in consumption of CH3OH and CH2O, while at high Ar percentages (>40% Ar), the production of CH3OH and CH2O is decreased. However, both CO and CO2 reached peak densities at 70%–90% Ar. Changing the CH4/O2 ratio while keeping 50% Ar in the discharge led to increased CH3OH and CH2O production, reaching peak densities at 35%–40% CH4. The CO and CO2 densities decreased beyond 20% CH4, indicating that a CH4 rich discharge is ideal for forming the desired oxygenates. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10625696
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 137
- Issue:
- 1
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 013301
- Subject(s) / Keyword(s):
- methane CH4 conversation methane-oxygenates atmospheric pressure plasmas
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Non-thermal plasma Methane capture Carbon dioxide capture Metal organic framework Methanol synthesis Atmospheric remediation 1. Introduction The stabilization of CO2 and CH4 concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. From these gases, CH4 is the most dominant anthropogenic greenhouse gas (after CO2). Methane can react with nitrogen oxides leading to tropospheric ozone pollution and posses a higher global warming potential (GWP) than CO2. It is 84 times more potent than CO2 over the first 20 years after release and ~28 times more potent after a century. Methane concentrations could be restored to preindustrial levels by removing ~3.2 of the 5.3 Gt of CH4 currently in the atmosphere [1]. Rather than capturing and storing the methane, CH4 could be oxidized to CO2, through the ther- modynamically favorable reaction: CH4 + 2O2 → CO2 + 2H2O; ΔHrx = –803 kJ mol–1. With the possible production of valuable condensates such as form- aldehyde and methanol when employing different reaction conditions (i. e., gas ratio, oxidant type, temperature) and rational selected catalysts. The large activation barrier associated with splitting methane’s C– H * Corresponding author. E-mail address: Maria.CarreonGarciduenas@sdsmt.edu (M.L. Carreon). https://doi.org/10.1016/j.jcou.2021.101642 The direct capture of CO2 and CH4 from the atmosphere to stabilize the concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. In this work we employed MOF-177 as an efficient CO2 and CH4 adsorbent at standard temperature and pressure conditions. We demonstrated the possibility of desorbing the gases under study when employing gentle plasma pulses of He. Moreover, we per- formed the synthesis of methanol from CH4 using O2 and CO2 as oxidants respectively in the presence of MOF- 177. We observed the highest conversion for the CH4 + O2 system when employing the MOF-177 at (5:1) (CH4: O2) flow ratio of 23.5 % and methanol selectivity of 17.65 %. While the best performance for the CH4 + CO2 system at the same conditions i.e., (5:1) (CH4: O2) flow ratio was 18.4 % for the methane conversion and 11.68 % for the selectivity towards methanol. We expect this preliminary understanding of the adsorption-reaction system under non-thermal plasma environment can lead to future atmospheric remediation technologies.more » « less
- 
            A simple procedure was developed to synthesize molybdenum carbide nanoparticles (Mo2C/BC) by carburization of molybdate salts supported on the biochar from pyrolysis of biomass without using extra carbon source or reducing gas. The molybdenum carbide formation procedure investigated by in-situ XRD and TGA-MS indicated that the phase transitions followed the path of (NH4)6Mo7O24·4H2O → (NH4)2Mo3O10 → (NH4)2Mo14O42 → Mo8O23 → Mo4O11 → MoO2 → Mo2C. The volatile gases CO, H2, and CH4 evolved from biochar and the biochar solid carbon participated in the reduction of molybdenum species, while the biochar and CH4 served as carbon sources for the carburization. Temperature programmed surface reactions of Mo2C/BC indicated that CH4 dissociated as CH4 ⇋ C∗ + 2H2 on the catalyst surface, and CO2 reacted as CO2 + C∗ ⇋ 2CO+ ∗ due to oxidation of Mo2C. Both experiment data and thermodynamic analysis for the study of operation conditions of CO2 reforming of CH4 clearly demonstrated that the yields of H2 and CO increased with the increased temperature and the reasonable conversions should be performed at 850 °C, at which both CH4 and CO2 conversions were higher than 80%.more » « less
- 
            Pepiot, Perrine (Ed.)The Global Pathway Analysis (GPA) algorithm helps analyze the chemical kinetics of complex combustion systems by identifying important global reaction pathways connecting a source species to a sink species through various important intermediate species (i.e., hub species). The present work aims to extend GPA algorithm to plasma-assisted combustion and fuel reforming systems to identify the dominant global pathways in such systems at various conditions. In addition, the present study extends the ability of GPA algorithm to identify reaction cycles involving the excitation of high-concentration species (e.g., O2, N2, and fuel) to their vibrational and electronic states and the subsequent de-excitation to their ground state, based on their significance on the reactivity of plasma-assisted systems in terms of gas heating and radical production. Provisions are made in the GPA algorithm to evaluate the reactivity of identified reaction pathways and cycles based on the element-flux transfer (i.e., dominance), heat release, and radical production rate. The newly developed Plasma-based Global Pathway Analysis (PGPA) algorithm is then used to analyze the plasma-assisted combustion of ammonia and reforming of methane. The PGPA analyses elucidated the significance of vibrational-translational cycles on the reactivity of NH3/air mixtures. Further, analyses on the production of NO ascribed the early reforming of NH3 to N2 and H2 in impeding the production of NO during plasma-assisted NH3 ignition. Lastly, the enhanced reforming of CH4/N2 mixtures using plasma has been attributed to electron impact dissociation of CH4 when compared to thermal reforming. In contrast, conventional path-Flux analysis (PFA) was found to require significant manual effort and pre-analysis intuitions from expert knowledge, making it arduous to provide valuable insights into plasma chemistry. The user-friendly and automated nature of PGPA thus provides a valuable tool for assessing the kinetics of plasma-assisted systems helpful in analyzing and, further, a foundation in reducing plasma-assisted chemistry, without the needs of expert knowledge.more » « less
- 
            To use piston engines and their pressure and temperature histories as a chemical rector to produce valuable chemicals, accurate chemical kinetics models are necessary so the engine parameters and mixtures can be designed. Using piston engines in such a way could lead to the production of target chemicals with net-negative CO2 emissions. This benefit is especially true for ethanol, a very common biofuel. To validate models, the dry reforming of ethanol and CO2 was investigated experimentally in a shock tube (50/50 ethanol/CO2 in 99.75% dilution) by following the formation of CO with a laser absorption setup. The effect of the presence of CO2 in the mixture was also investigated by comparing the results of the 50/50 ethanol/CO2 mixture with those from the pyrolysis of ethanol (without CO2) at various concentrations (99.75 and 98% dilution). The 98% dilution results compare extremely well with results from the literature, whereas the other conditions had never been investigated prior. The experimental data were compared to modern detailed kinetics mechanisms, and the experimental CO profiles were poorly predicted overall. Recent literature developments on ethanol pyrolysis were incorporated into the models, and the predictions were improved in some cases and conditions, although further improvements are still necessary. A numerical analysis (rate of production and sensitivity) was performed for the most accurate modified model to highlight the most important reactions involved in the formation of CO under our conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
