Global Pathway Selection/Analysis (GPSA) algorithm helps in analyzing the chemical kinetics of complex combustion systems by identifying important global reaction pathways that connects a source and a sink species. The present work aims to extend the application of GPSA to plasma assisted combustion systems in order to identify the dominant global pathways that govern the plasma and combustion kinetics at various conditions. The reaction cycles involving the excitation of nitrogen to its vibrational and electronic states and the subsequent de-excitation to its ground state are found to control the reactivity of plasma assisted systems. Provisions are made in the GPSA algorithm to capture the dominant reaction pathways and cycles of plasma assisted combustion (i.e., p-GPSA). Further, the analysis of plasma assisted ammonia combustion are presented as an example, which includes the results obtained using both the traditional path flux analysis and p-GPSA. The dominant pathways for the plasma assisted combustion of ammonia are identified along with the dominant excitation--de-excitation loops and their importance are ascertained and verified using path flux analysis. 
                        more » 
                        « less   
                    
                            
                            Plasma-based global pathway analysis to understand the chemical kinetics of plasma-assisted combustion and fuel reforming
                        
                    
    
            The Global Pathway Analysis (GPA) algorithm helps analyze the chemical kinetics of complex combustion systems by identifying important global reaction pathways connecting a source species to a sink species through various important intermediate species (i.e., hub species). The present work aims to extend GPA algorithm to plasma-assisted combustion and fuel reforming systems to identify the dominant global pathways in such systems at various conditions. In addition, the present study extends the ability of GPA algorithm to identify reaction cycles involving the excitation of high-concentration species (e.g., O2, N2, and fuel) to their vibrational and electronic states and the subsequent de-excitation to their ground state, based on their significance on the reactivity of plasma-assisted systems in terms of gas heating and radical production. Provisions are made in the GPA algorithm to evaluate the reactivity of identified reaction pathways and cycles based on the element-flux transfer (i.e., dominance), heat release, and radical production rate. The newly developed Plasma-based Global Pathway Analysis (PGPA) algorithm is then used to analyze the plasma-assisted combustion of ammonia and reforming of methane. The PGPA analyses elucidated the significance of vibrational-translational cycles on the reactivity of NH3/air mixtures. Further, analyses on the production of NO ascribed the early reforming of NH3 to N2 and H2 in impeding the production of NO during plasma-assisted NH3 ignition. Lastly, the enhanced reforming of CH4/N2 mixtures using plasma has been attributed to electron impact dissociation of CH4 when compared to thermal reforming. In contrast, conventional path-Flux analysis (PFA) was found to require significant manual effort and pre-analysis intuitions from expert knowledge, making it arduous to provide valuable insights into plasma chemistry. The user-friendly and automated nature of PGPA thus provides a valuable tool for assessing the kinetics of plasma-assisted systems helpful in analyzing and, further, a foundation in reducing plasma-assisted chemistry, without the needs of expert knowledge. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2002635
- PAR ID:
- 10481922
- Editor(s):
- Pepiot, Perrine
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Combustion and Flame
- Volume:
- 255
- Issue:
- C
- ISSN:
- 0010-2180
- Page Range / eLocation ID:
- 112927
- Subject(s) / Keyword(s):
- Global pathway analysis (GPA) Plasma assisted combustion (PAC) Fuel reforming Ammonia combustion Methane reforming Global reaction pathways
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Natural gas associated with oil wells and natural gas fields is a significant source of greenhouse gas emissions and airborne pollutants. Flaring of the associated gas removes greenhouse gases like methane and other hydrocarbons. The present study explores the possibility of enhancing the flaring of associated gas mixtures (C1 – C4 alkane mixture) using nanosecond pulsed non-equilibrium plasma discharges. Starting with a detailed chemistry for C0 – C4 hydrocarbons (Aramco mechanism 3.0 – 589 species), systematic reductions are performed to obtain a smaller reduced mechanism (156 species) yet retaining the relevant kinetics of C1 – C4 alkanes at atmospheric pressure and varying equivalence ratios (φ = 0.5 – 2.0). This conventional combustion chemistry for small alkanes is then coupled with the plasma kinetics of CH4, C2H6, C3H8, and N2, including electron-impact excitations, dissociations, and ionization reactions. The newly developed plasma-based flare gas chemistry is then utilized to investigate repetitively pulsed non-equilibrium plasma-assisted reforming and subsequent combustion of the flare gas mixture diluted with N2 at different conditions. The results indicate an enhanced production of hydrogen, ethylene and other species in the reformed gas mixture, owing to the electron-impact dissociation pathways and subsequent H-abstractions and recombination reactions, thereby resulting in a mixture of CH4, H2, C2H4, C2H2, and other unsaturated C3 species. The reformed mixture shows an enhanced reactivity as exhibited by their shorter ignition delays. The reformed mixture is also observed to undergo increased methane destruction and higher equilibrium temperatures compared to the original mixture as the gas temperature increases, thereby exhibiting a potential for reducing the unburnt emissions of methane and other hydrocarbons.more » « less
- 
            The backward problem of plasma assisted combustion emphasizes evaluating the effect of the evolving thermochemical state on the plasma discharge. This paper investigates the dependence of avalanche to streamer to spark formation dynamics and kinetics on the gas composition and temperature at different points in an ammonia-air premixed laminar flame using a self-consistent multigrid-based 1D plasma solver. Different values of alpha, the coefficient for effective ionization events per unit length, have been reported for electron avalanches in air and stoichiometric NH3-air mixtures. The streamer inception has been shown to obey the Meek’s criterion. An exponential reduction in streamer and spark formation time has been observed from plasma simulations at different points in the unburnt, pre-heat zone, reaction zone and the fully burnt regions of the premixed flame. While the enhancement of the reduced electric field with increasing temperature affects effective ionization, there exists a minimum breakdown field for streamer formation, which does not vary proportionally with the changing number density of the gas. The change in the mixture from reactants (NH3, O2, N2) to products of complete combustion of ammonia in air (N2, H2O) has also been shown to affect the streamer and spark formation. Finally, the major pathways during the streamer and spark phases which are responsible for producing important radicals used in combustion of NH3 are also discussed.more » « less
- 
            Nanosecond pulsed plasmas have been demonstrated, both experimentally and numerically, to be beneficial for ignition, mainly through gas heating (at different timescales) and radical seeding. However, most studies focus on specific gas conditions, and little work has been done to understand how plasma performance is affected by fuel and oxygen content, at different gas temperatures and deposited energies. This is relevant to map the performance envelope of plasma-assisted combustion across different regimes, spanning from fuel-lean to fuel-rich operation, as well as oxygen-rich to oxygen-vitiated conditions, of interest to different industries. This work presents a computational effort to address a large parametric exploration of combustion environments and map out the actuation authority of plasmas under different conditions. The work uses a zero-dimensional plasma-combustion kinetics solver developed in-house to study the ignition of CH4/O2/N2 mixtures with plasma assistance. A main contribution of the study is the detailed tracking of the energy, from the electrical input all the way to the thermal and kinetic effects that result in combustion enhancement. This extends prior works that focus on the first step of the energy transfer: from the electrical input to the electron-impact processes. Independent of the composition, four pathways stand out: (i) vibrational-translational relaxation, (ii) fast gas heating, (iii) O2 dissociation, and (iv) CH4 dissociation. Results show that the activated energy pathways are highly dependent on gas state, composition, and pulse shape, and can explain the observed range in performance regarding ignition enhancement. The approach can be used to calculate the fractional energy deposition into the main pathways for any mixture or composition, including new fuels, and can be a valuable tool to construct phenomenological models of the plasma across combustion environments.more » « less
- 
            Hybrid fs/ps coherent anti-Stokes Raman scattering (CARS) is employed to investigate the vibrational temperature evolution of N2 in lean methane flames exposed to pulsed microwave irradiation. Vibrational temperature during and post microwave illumination by a 2 μs, 30 kW peak power, 3.05 GHz pulse is monitored in flames diluted with N2, N2 and CO2 , and N2 and Ar. Electric field strengths inside the microwave cavity are monitored directly using electric field probes. Temperature increases up to 140 K were observed in flames with additional Ar and CO2 dilution, whereas temperature increases by 80 K were observed in mixtures diluted with only N2 . The microwave energy deposition to excited states begins to thermalize over scales of 100 μs, however, equilibrium is not reached before excited combustion products convect out of the probe volume on the order of several 1 ms. Understanding the impact of varying bath gases on microwave interaction, magnitude of temperature rise and thermalization timescales is critical for the development and validation of new kinetic models for applications exhibiting significant degrees of thermal non-equilibrium, such as high-speed reentry flows and plasma-assisted combustion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    