skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Deliberating Public Welfare in Engineering – The Capability Approach
This paper addresses the theme of “the Moral and Ethical Responsibility of Engineers and Engineering”, particularly responding to the question of how to define or deliberate the meaning of ‘public welfare’ and ‘common good’ in engineering degree programs. Drawing from decades of international work on human development, particularly in the global south, this paper reports on adapting the capability approach to an engineering degree program. Developed by Amartya Sen, the capability approach sought to replace GDP-based models of welfare economics by framing the goal of development as enabling individuals to live a life they value. The things a person values, what they are and can do (determined by their opportunities, experiences, and cultural affordances) are their ‘functionings’. In Sen’s framework each individual has a unique ‘functionings vector’ based on what they value. Although someone’s functionings vector indicates valued goals, they will be unsuccessful in achieving their goals unless they have access to needed resources, can effectively utilize those resources, possess agency, and have the ‘capability’ to enact the functionings. ‘Capabilities’ determine the set of functionings that are actually available to a person. Although rarely used in engineering, the capability approach offers a mature and well-developed framework to address issues of public welfare. Public good is defined through an individual’s freedom to pursue a life they have reason to value, and such freedom defines both the means and end of development. The role of engineering in society—primarily through development of infrastructure—is to support equitable access to capabilities for all individuals. Through support of an NSF Revolutionizing Engineering Departments (RED) grant, an ECE department in a mid-Atlantic liberal arts university has adapted the capability approach to inform change in an undergraduate degree program. Specific examples from four years of implementation are shared.  more » « less
Award ID(s):
2022271
PAR ID:
10625851
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society for Engineering Education
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the theme of “the Moral and Ethical Responsibility of Engineers and Engineering”, particularly responding to the question of how to define or deliberate the meaning of ‘public welfare’ and ‘common good’ in engineering degree programs. Drawing from decades of international work on human development, particularly in the global south, this paper reports on adapting the capability approach to an engineering degree program. Developed by Amartya Sen, the capability approach sought to replace GDP-based models of welfare economics by framing the goal of development as enabling individuals to live a life they value. The things a person values, what they are and can do (determined by their opportunities, experiences, and cultural affordances) are their ‘functionings’. In Sen’s framework each individual has a unique ‘functionings vector’ based on what they value. Although someone’s functionings vector indicates valued goals, they will be unsuccessful in achieving their goals unless they have access to needed resources, can effectively utilize those resources, possess agency, and have the ‘capability’ to enact the functionings. ‘Capabilities’ determine the set of functionings that are actually available to a person. Although rarely used in engineering, the capability approach offers a mature and well-developed framework to address issues of public welfare. Public good is defined through an individual’s freedom to pursue a life they have reason to value, and such freedom defines both the means and end of development. The role of engineering in society—through development of infrastructure—is to support equitable access to capabilities for all individuals. Through support of an NSF Revolutionizing Engineering Departments (RED) grant, an ECE department in a mid-Atlantic liberal arts university has adapted the capability approach to inform change in an undergraduate degree program. Specific examples from four years of implementation are shared. 
    more » « less
  2. Most engineering programs in the United States are accredited by ABET under the guidelines known as EC-2000. The EC-2000 framework is broadly based on the continual quality management (CQM) movement in industry where programs are striving to constantly improve the quality of their output, in this case the skills of graduates. Broadly speaking, ABET evaluates engineering programs on eight different criteria; some are related to processes, some to resources, but those central to CQM are program educational objectives, that define hoped for long-term accomplishments of graduates, and outcomes which articulate what students can do when they graduate. Degree programs must convince ABET they have a documented and effective process to improve outcomes to gain accreditation. CQM of course is not the only framework by which educational development can be framed or measured. This paper explores ABET processes through the lens of the economist Amartya Sen’s capability approach, which is broadly applied in the developing world in areas of inequity, poverty, and human rights. The capability approach is often used when a focus on diverse individuals is desirable for understanding aspects of development. Central to Sen’s approach are capabilities and functionings. Capabilities are the resources and supports in an individual’s environment that provide opportunities to pursue a life they value. Functionings are what they actually become and do. Thus capabilities can be thought of as the potential for functionings; alternatively capabilities are opportunities and functionings are outcomes. This paper compares ABET’s accreditation criteria with a published set of capabilities in education. The comparison shows there are some areas where criteria overlap with capabilities, but also several areas where the overlap is low. The capabilities that aligned most with ABET criteria overlap with engineering epistemologies and a view of students as the ‘product’ of engineering education. 
    more » « less
  3. Most engineering programs in the United States are accredited by ABET under the guidelines known as EC-2000. The EC-2000 framework is broadly based on the continual quality management (CQM) movement in industry where programs are striving to constantly improve the quality of their output, in this case the skills of graduates. Broadly speaking, ABET evaluates engineering programs on eight different criteria; some are related to processes, some to resources, but those central to CQM are program educational objectives, that define hoped for long-term accomplishments of graduates, and outcomes which articulate what students can do when they graduate. Degree programs must convince ABET they have a documented and effective process to improve outcomes to gain accreditation. CQM of course is not the only framework by which educational development can be framed or measured. This paper explores ABET processes through the lens of the economist Amartya Sen’s capability approach, which is broadly applied in the developing world in areas of inequity, poverty, and human rights. The capability approach is often used when a focus on diverse individuals is desirable for understanding aspects of development. Central to Sen’s approach are capabilities and functionings. Capabilities are the resources and supports in an individual’s environment that provide opportunities to pursue a life they value. Functionings are what they actually become and do. Thus capabilities can be thought of as the potential for functionings; alternatively capabilities are opportunities and functionings are outcomes. This paper compares ABET’s accreditation criteria with a published set of capabilities in education. The comparison shows there are some areas where criteria overlap with capabilities, but also several areas where the overlap is low. The capabilities that aligned most with ABET criteria overlap with engineering epistemologies and a view of students as the ‘product’ of engineering education. 
    more » « less
  4. Context: As faculty of engineering degree programs in private liberal-arts universities in the United States the authors are structurally insulated from many immediate crises, but at the leading edge of other, more slowly evolving ones. These slow-motion crises are occurring in the education systems of many developing countries and can be classified as crises of economics, related to the cost and received value of a degree; crises of equity from ongoing and systemic disparities in educational outcomes; and crises of organization arising from contested visions of the purpose of higher education. While lacking the urgency of current water, food, energy, and climate crises, they are no less important since education is both a core capability and functioning for living a life one values. Methodology: To address these persistent and systemic issues this paper reports on an ongoing conceptual reorganization of a degree program using the capability approach. The reorganization entails shifting from the dominant outcomes-based paradigm of engineering education in the United States to an opportunity-based framework that prioritizes student development over human capital. We report on efforts over a two-year time frame to adapt the capability approach to the degree programs in a single engineering department. While much of the application of the capability approach in education has focused on the systemic or macro-scale, in this work we have adopted an ecological metaphor to work across scales, drawing from prior macro-scale work to inform change efforts at micro-scale of a single degree program. Several parallel efforts were required to align the program to a more capability informed model. One was to identify and articulate sets of capabilities across educational scales for a variety of stakeholders, following processes recommended by established capabilities scholars (Robeyns 2017, Walker 2008, Mathebula 2018). A set of potential capabilities were developed by drawing from multiple internal and external influencers of the program. These lists were then iteratively refined based on faculty feedback, ethnographic observations, and case studies before being vetted by student stakeholders using a Q-method approach (Simpson 2018). Another was to find ways to directly engage students with the capabilities-driven transformation structural changes to the curriculum were implemented to elicit reflection. Finally, to ground these efforts in prior student developmental work in engineering education, we revised a model of the capabilities approach that integrates social cognitive career theory (SCCT) (Lent et al. 2002). This model integrated existing educational outcomes with capabilities and functionings, explicating their relationships. The model also emphasized various pedagogical processes used in the degree program and connected them to student development in engineering using social cognitive career theory. Data collection involved modifications to previously validated instruments. Analysis: These development efforts are at a stage where data is still emerging, but have shown the viability of a capability approach as a tool for reconsideration of processes and mission of degree programs. As in other domains where the capability approach has been applied, many of the results emerge from the process itself as normative questions are fore fronted and addressed in a democratic fashion. As a case study in micro-scale application of the capability approach, this paper shows the viability of this framework to engender and assess the highly multidimensional effects the capability approach can have on student learning and well-being in higher education degree programs. This case study discusses ongoing reorganization of a degree program from an outcomes-based paradigm to an opportunity-based framework using the capability approach. Preliminary results show the capability approach is a viable framework for normative reconsideration of processes and missions of degree programs. This works informs use of the capability approach in a localized, small-scale implementation within higher education in the Unites States. 
    more » « less
  5. This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities on a coherent philosophical model that guides theories of change. The project has adopted Amartya Sen’s Development as Freedom or capabilities framework as the organizing philosophy. In this model the freedom for individuals to develop capabilities they value is viewed as both the means and end of development. The overarching goal of the project is then for students to build personalized frameworks based on their value systems which allow them to later address complex, convergent problems. Framework development by individual students is supported in the project through several activities: modifying grading practices to provide detailed feedback on skills that support convergence, eliciting self-narratives from students about their pathways through courses and projects with the goal of developing reflection, and carefully integrating educational software solutions that can reduce some aspects of faculty workload which is hypothesized to enable faculty to focus efforts on integrating convergent projects throughout the curriculum. The poster will present initial results on the interventions to the program including grading, software integration, projects, and narratives. The work presented will also cover an ethnographic study of faculty practices which serves as an early-stage baseline to calibrate longer-term changes. 
    more » « less