Purpose The underrepresentation of women in engineering has important consequences for meeting the need for a larger, talented scientific and technological labor force. Increasing the proportion of women faculty in engineering will help increase the persistence probabilities of women undergraduate and graduate students in engineering, as well as contribute to the range and diversity of ideas toward innovations and solutions to the greatest engineering challenges. This study aims to examine the association among gender, family formation and post-PhD employment patterns of a cohort of engineering doctorates. Design/methodology/approach Using the National Science Foundation’s Survey of Doctorate Recipients data, 2001–2010, descriptive and multinomial logit regression analyses are conducted to illustrate the career trajectories of engineering PhDs over a ten-year period. Findings The career trajectories of engineering PhDs are nonlinear, and transitions between employment sectors commonly occur over the ten-year time period studied. Although women engineering PhDs with young dependents are less likely to be employed initially after PhD completion, they tend to enter the workforce in the academic sector as time progresses. Early post-PhD employment as a postdoctoral researcher or in the academic sector contributes to the pursuit of the professoriate downstream. Originality/value While previous studies tend to focus on the early career outcomes of science and engineering students, this study contributes to the literature by focusing on the long-term career outcomes of engineering doctorates. Research findings provide engineering PhD students and PhDs with more information regarding potential post-PhD career trajectories, highlighting the multitude of career options and transitions that occur over time. Research findings also provide higher education administrators and doctoral program stakeholders with foundational information toward designing and revitalizing professional development programs to help PhD students prepare for the workforce. The findings have the potential to be applied toward helping increase diversity by shaping policies and programs to encourage multiple alternative career pathways to the professoriate.
more »
« less
This content will become publicly available on June 22, 2026
Tinkerers, Artists, and Athletes: Using Personas to Spotlight Alternative Engineering Identities and Pathways
Engineering education is typically described using a “pipeline” metaphor, wherein students are shuffled along pre-determined pathways toward a narrow set of career outcomes. However, several decades of research have shown that this pipeline model does not accurately describe engineering trajectories and may exclude students who enter the pipeline at different times and have other career outcomes in mind. Similarly, qualitative studies have shown that normative identities in engineering feature masculine stereotypes such as “geeks” and “nerds” that reproduce technical/social dichotomies. Several studies have suggested that broadening the expected outcomes and identities in engineering to include “alternative” pathways and identities may contribute to a shift to a more inclusive form of engineering education. To make these alternative pathways more visible to faculty and students, we have developed a set of engineering “personas” based on interviews [n=16] with senior engineering students at a liberal arts university. Interviews were coded by three members of the research team using consensus coding techniques to ascertain core elements of the personas: Origins, Identities, and Trajectories. Early drafts of student personas were presented to students, who provided insights into future iterations. We propose several engineering personas using a matrix approach, which allows each persona to be adaptable for various origins, identities, and trajectories. These personas contribute to our understanding of alternative engineering pathways based on real student experiences. We intend to use these personas as pedagogical tools to help faculty recognize a wider range of engineering identities, and to help students see themselves as “real engineers” without sacrificing other (non-technical) core values, identities, and pathways.
more »
« less
- Award ID(s):
- 2022271
- PAR ID:
- 10625952
- Publisher / Repository:
- American Society for Engineering Education
- Date Published:
- ISSN:
- 2153-5965
- Format(s):
- Medium: X
- Location:
- Montreal, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44.more » « less
-
This paper explores the implementation and impact of reflective practices in engineering courses, as perceived by faculty members and teaching assistants (TAs) who integrated these strategies in their Spring 2023 course offerings. Reflection provides a valuable opportunity for students to enhance their learning process and become more self-aware of their strengths, weaknesses, and overall progress. This study aims to investigate the experiences and perceptions of instructors who employed reflective practices and gain insights into the effectiveness and challenges associated with their implementation. The qualitative research design employed for this study involved conducting in-depth interviews with faculty members and TAs from two engineering disciplines, civil and environmental engineering, and biological systems engineering. These reflective practices encompassed six reflections over the semester, all aimed at promoting metacognition and fostering meaningful learning experiences. The interviews were structured to elicit detailed information regarding the perceived usefulness of reflective practices, the strategies employed, the perceived impact on student learning outcomes, and any observed challenges encountered during implementation. Preliminary results from interviews with three faculty members and three TAs highlighted the diverse ways in which reflective practices were integrated into engineering courses. Common themes emerged concerning the perceived benefits, including student and instructor growth, better self-regulation skills for the students, deeper learning, and enhanced critical thinking skills. Moreover, instructors found that these strategies could foster a more productive learning environment and improved student-teacher communication. However, challenges included time constraints, student resistance, and off-topic reflections. Faculty members and TAs stressed the importance of clear guidelines and scaffolding to optimize the effectiveness of reflective practices and mitigate these challenges. The findings from this study will contribute to the scholarship of teaching and learning by providing empirical evidence on the successful implementation and positive outcomes of reflective practices in engineering education. This study also pinpoints valuable recommendations for instructors seeking to implement reflective strategies effectively. Additionally, the insights gained provide a foundation for further research and discussion regarding the integration of reflective practices into alternative STEM disciplines.more » « less
-
null (Ed.)This research paper examines students’ perceptions of faculty and how it influences their identity trajectory. First-year students enter undergraduate engineering education with rich stories of how they came to choose engineering as a career pathway. Over time, the culture of engineering and network of peers, faculty members, and professionals shape students' stories and identity trajectories. How students “cast” faculty members in their story, often as helpful or hurtful actors, have implications for their identity trajectory, success, and, ultimately, retention in engineering. In this paper, we used two composite narratives constructed from longitudinal narrative interviews with 16 students to illustrate how students cast faculty into a role as either a support or an obstacle, based on their classroom experiences and interactions with them. This paper highlights the interactions that led these students to view faculty as helpful or harmful and explores the effects resulting: influence over student identity trajectory by fostering or hindering relationship building and networking, as well as influencing intellectual growth and personal ability beliefs.more » « less
-
There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.more » « less
An official website of the United States government
