skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 26, 2025

Title: Examining the Implementation and Impact of Reflective Practices in Engineering Courses: Insights from Faculty and Teaching Assistants
This paper explores the implementation and impact of reflective practices in engineering courses, as perceived by faculty members and teaching assistants (TAs) who integrated these strategies in their Spring 2023 course offerings. Reflection provides a valuable opportunity for students to enhance their learning process and become more self-aware of their strengths, weaknesses, and overall progress. This study aims to investigate the experiences and perceptions of instructors who employed reflective practices and gain insights into the effectiveness and challenges associated with their implementation. The qualitative research design employed for this study involved conducting in-depth interviews with faculty members and TAs from two engineering disciplines, civil and environmental engineering, and biological systems engineering. These reflective practices encompassed six reflections over the semester, all aimed at promoting metacognition and fostering meaningful learning experiences. The interviews were structured to elicit detailed information regarding the perceived usefulness of reflective practices, the strategies employed, the perceived impact on student learning outcomes, and any observed challenges encountered during implementation. Preliminary results from interviews with three faculty members and three TAs highlighted the diverse ways in which reflective practices were integrated into engineering courses. Common themes emerged concerning the perceived benefits, including student and instructor growth, better self-regulation skills for the students, deeper learning, and enhanced critical thinking skills. Moreover, instructors found that these strategies could foster a more productive learning environment and improved student-teacher communication. However, challenges included time constraints, student resistance, and off-topic reflections. Faculty members and TAs stressed the importance of clear guidelines and scaffolding to optimize the effectiveness of reflective practices and mitigate these challenges. The findings from this study will contribute to the scholarship of teaching and learning by providing empirical evidence on the successful implementation and positive outcomes of reflective practices in engineering education. This study also pinpoints valuable recommendations for instructors seeking to implement reflective strategies effectively. Additionally, the insights gained provide a foundation for further research and discussion regarding the integration of reflective practices into alternative STEM disciplines.  more » « less
Award ID(s):
2235227
NSF-PAR ID:
10505265
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society for Engineering Education
Date Published:
Journal Name:
American
Subject(s) / Keyword(s):
["reflection","metacognition","instructors","interviews"]
Format(s):
Medium: X
Location:
Portland, OR
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  2. null (Ed.)
    This paper is based on a series of semi-structured, qualitative interviews that were conducted with students, by an undergraduate student and lead author of this paper, that focused on their experiences with educational technologies and online teaching pedagogy in the wake of the COVID-19 pandemic. As U.S. educators scrambled to adapt to online course delivery modes as a result of the first wave of the pandemic in the spring 2020 semester, those in the educational technology and online learning community saw the potential of this movement to vastly accelerate the implementation of online systems in higher education. A shift that may have taken 20 years to accomplish was implemented in two waves, first with the immediate forced shift to online learning in March 2020; and second, a less immediate shift to hybrid and online instruction designed to accommodate the different geographic variation in COVID-19 intensity, along with varied political and institutional ecologies surrounding online versus in-person instruction for the 2020-2021 academic year. With all of the rapid changes that were occurring during the spring of 2020, we wanted to investigate how students experienced and perceived faculty use of technology during this particular moment in time. This study documents this transition through the eyes of undergraduate students, and demonstrates the varied ways in which faculty navigated the transition to online learning. According to our interviewees, some faculty were thoughtful and competent and provided a supportive environment that paid attention to a students’ capacity for online learning, rather than maintaining traditional instructional practices. Others relied on practices from in-person instruction that were familiar, but appeared to be nervous in the new online teaching environment. Then there were those who seemed occupied by other concerns, where a focus on effective undergraduate teaching remained limited to begin with, and their approach to online instruction was driven by convenience. Our qualitative data clearly reveals that the ways in which faculty conducted their online courses directly impacted student learning experiences. In this study, we set out to document both the faculty instructional strategies in a hybrid/online environment and student accounts of those choices and their resulting experiences. While we continue to analyze this unique data set on this moment of transition in engineering education, we hope that this paper will also lead to policy recommendations regarding faculty adaptations to online instruction in general. We include some initial thoughts and recommendations below. 
    more » « less
  3. This work-in-progress paper seeks to examine faculty choice of teaching strategies to improve students’ engineering self-efficacy [1], [2] (belief in one’s abilities to successfully accomplish tasks in engineering) as well as their reflections on the effectiveness of the teaching strategy. Increases in self-efficacy have been related to improved academic and career outcomes [3], especially for women in non-traditional fields such as engineering. The goal of the study is to determine simple yet effective strategies that can be implemented in engineering classrooms to improve self-efficacy. Seven engineering faculty members participated in a faculty learning community (FLC), a semester long program to learn about teaching strategies in each of the four areas of self-efficacy; mastery experiences (e.g., active learning, scaffolding), vicarious learning (e.g., guest lectures, peer mentors, group work), social persuasion (e.g., constructive feedback, positive self-talk), and emotional arousal (e.g., test anxiety, building rapport). The faculty then chose and implemented strategies in each of the four areas in one of their engineering courses. Monthly meetings of the FLC during implementation allowed faculty to share their experiences and suggestions for refinements in their teaching strategy. The paper examines the faculty member choice (why they chose to use particular strategies in their course) as well as their reflections on how well the strategy worked (impact on student learning vs ease of implementation). In addition, the paper examines in-class observations and student survey responses to determine if they felt a particular strategy was useful. The research seeks to identify strategies that faculty members chose and are viewed as effective by both the faculty and students. The presentation will seek additional feedback from the wider community on the effectiveness of teaching strategies to improve self-efficacy and future work will include the analysis of additional surveys that were administered to measure student self-efficacy with the goal of determining simple and effective strategies that can be implemented in engineering classrooms. 
    more » « less
  4. This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findings characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students. 
    more » « less
  5. This research explores the barriers, concerns, and obstacles undergraduate STEM educators face when implementing high-impact teaching practices (HIPs), the application of which may improve student learning outcomes. Because our study took place during the COVID-19 pandemic, our results also shed light on the unique challenges of utilizing HIPs in asynchronous online-learning environments. Thirteen undergraduate instructors were interviewed about their current teaching practices in order to identify barriers to or support for adopting HIPs. Data collected through semi-structured interviews revealed administrative and financial restraints as barriers to effective teaching which have been found in previous research. A number of new and unique obstacles emerged out of teaching remotely or online during the pandemic, including a heightened concern over the instructor’s ability to connect with students and engage in the best teaching practices. This research extends our current understanding of barriers and concerns about adopting HIPs in undergraduate STEM courses because of the unique perceived threats that emerged during the pandemic. We identify strategies to equip faculty with the support they need to provide equitable learning experiences, including access to consultants who support curriculum development and implementation in the classroom, ongoing educational coaching, and increased access to professional-development opportunities and a community of inquiry to discuss teaching strategies.

     
    more » « less