skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining the Implementation and Impact of Reflective Practices in Engineering Courses: Insights from Faculty and Teaching Assistants
This paper explores the implementation and impact of reflective practices in engineering courses, as perceived by faculty members and teaching assistants (TAs) who integrated these strategies in their Spring 2023 course offerings. Reflection provides a valuable opportunity for students to enhance their learning process and become more self-aware of their strengths, weaknesses, and overall progress. This study aims to investigate the experiences and perceptions of instructors who employed reflective practices and gain insights into the effectiveness and challenges associated with their implementation. The qualitative research design employed for this study involved conducting in-depth interviews with faculty members and TAs from two engineering disciplines, civil and environmental engineering, and biological systems engineering. These reflective practices encompassed six reflections over the semester, all aimed at promoting metacognition and fostering meaningful learning experiences. The interviews were structured to elicit detailed information regarding the perceived usefulness of reflective practices, the strategies employed, the perceived impact on student learning outcomes, and any observed challenges encountered during implementation. Preliminary results from interviews with three faculty members and three TAs highlighted the diverse ways in which reflective practices were integrated into engineering courses. Common themes emerged concerning the perceived benefits, including student and instructor growth, better self-regulation skills for the students, deeper learning, and enhanced critical thinking skills. Moreover, instructors found that these strategies could foster a more productive learning environment and improved student-teacher communication. However, challenges included time constraints, student resistance, and off-topic reflections. Faculty members and TAs stressed the importance of clear guidelines and scaffolding to optimize the effectiveness of reflective practices and mitigate these challenges. The findings from this study will contribute to the scholarship of teaching and learning by providing empirical evidence on the successful implementation and positive outcomes of reflective practices in engineering education. This study also pinpoints valuable recommendations for instructors seeking to implement reflective strategies effectively. Additionally, the insights gained provide a foundation for further research and discussion regarding the integration of reflective practices into alternative STEM disciplines.  more » « less
Award ID(s):
2235227
PAR ID:
10505265
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society for Engineering Education
Date Published:
Journal Name:
American
Subject(s) / Keyword(s):
reflection metacognition instructors interviews
Format(s):
Medium: X
Location:
Portland, OR
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We detail an exploratory study of faculty members’ perceptions of activities associated with undergraduate engineering programs in university-based makerspaces. Our study examines the affordances and constraints faculty perceive regarding teaching and learning in these spaces and, specifically, how makerspaces support engineering faculty members in accomplishing the goals and expectations they have for undergraduate students’ learning and development. We found that makerspaces inspired faculty members’ curricular and instructional innovations, including design of new courses and implementation of practices meant to result in more team-based and active learning. Faculty perceived student activities in makerspaces as fostering of student agency and development of engineering skills, knowledge, and affect. Faculty also identified concerns related to the teaching of engineering in these spaces, including the need to change their instructional practices to more fully engage students and to balance the sophisticated tools and resources with the rigor of completing complex engineering tasks. We use structuration theory to illuminate how faculty act, rationalize, and reflect on their teaching practices and goals in relation to structures present in university-based makerspace. Our study is intended to inform faculty and administrators working to engage students through interactions in makerspaces or similar innovations, and to consider how access to and impact of these structures support undergraduate engineering education. 
    more » « less
  2. We detail an exploratory study of faculty members’ perceptions of activities associated with undergraduate engineering programs in university-based makerspaces. Our study examines the affordances and constraints faculty perceive regarding teaching and learning in these spaces and, specifically, how makerspaces support engineering faculty members in accomplishing the goals and expectations they have for undergraduate students’ learning and development. We found that makerspaces inspired faculty members’ curricular and instructional innovations, including design of new courses and implementation of practices meant to result in more team-based and active learning. Faculty perceived student activities in makerspaces as fostering of student agency and development of engineering skills, knowledge, and affect. Faculty also identified concerns related to the teaching of engineering in these spaces, including the need to change their instructional practices to more fully engage students and to balance the sophisticated tools and resources with the rigor of completing complex engineering tasks. We use structuration theory to illuminate how faculty act, rationalize, and reflect on their teaching practices and goals in relation to structures present in university-based makerspace. Our study is intended to inform faculty and administrators working to engage students through interactions in makerspaces or similar innovations, and to consider how access to and impact of these structures support undergraduate engineering education. 
    more » « less
  3. Quantitative reasoning (QR) is the ability to apply mathematics and statistics in the context of real-life situations and scientific problems. It is an important skill that students require to make sense of complex biological phenomena and handle large datasets in biology courses and research as well as in professional contexts. Biology educators and researchers are responding to the increasing need for QR through curricular reforms and research into biology education. This qualitative study investigates how undergraduate biology instructors implement QR into their teaching. The study used pedagogical content knowledge (PCK) and a QR framework to explore instructors’ instructional goals, strategies, and perceived challenges and affordances in undergraduate biology instruction. The participants included 21 biology faculty across various institutions in the United States, who intentionally integrated QR in their instruction. Semi-structured interviews were used to collect data focusing on participants’ beliefs, experiences, and classroom practices. Findings indicated that instructors adapt their QR instruction based on course level and student preparedness. In lower-division courses, strategies emphasized building foundational skills, reducing math anxiety, and using scaffolded instruction to promote confidence. In upper-division courses, instructors expected greater math fluency but still encountered a wide range of student abilities, prompting a focus on correcting misconceptions in integrating math knowledge and fostering deeper conceptual understanding in biology. Many instructors reported that their personal and educational experiences, especially struggles with math, often shaped their inclusive and empathetic teaching practices. Additionally, instructors’ research backgrounds influenced instructional design, particularly in the use of authentic data, statistical tools, and real-world applications. Instructors’ teaching experiences led to refinement in lesson planning, pacing, and active learning strategies. Despite their efforts, instructors faced both internal and external challenges in implementing QR, including discomfort with teaching math, time limitations, student resistance, and institutional barriers. However, affordances such as departmental support, interdisciplinary collaboration, and curricular flexibility helped to overcome some of these challenges. This study highlights the complex relationships between instructors’ experiences, beliefs, and contextual factors in shaping QR instruction. This calls for professional development that supports reflective practice, builds interdisciplinary competence, and promotes instructional strategies that bridge biology and mathematics and will help instructors design a learning environment that better support students’ development of QR skills. These findings offer valuable guidance for professional development aimed at helping biology instructors incorporate quantitative reasoning into their teaching. Such efforts can better equip students to meet the quantitative demands of modern biology and promote their continued engagement in STEM fields through more inclusive and integrated instructional approaches. 
    more » « less
  4. This work-in-progress paper seeks to examine faculty choice of teaching strategies to improve students’ engineering self-efficacy [1], [2] (belief in one’s abilities to successfully accomplish tasks in engineering) as well as their reflections on the effectiveness of the teaching strategy. Increases in self-efficacy have been related to improved academic and career outcomes [3], especially for women in non-traditional fields such as engineering. The goal of the study is to determine simple yet effective strategies that can be implemented in engineering classrooms to improve self-efficacy. Seven engineering faculty members participated in a faculty learning community (FLC), a semester long program to learn about teaching strategies in each of the four areas of self-efficacy; mastery experiences (e.g., active learning, scaffolding), vicarious learning (e.g., guest lectures, peer mentors, group work), social persuasion (e.g., constructive feedback, positive self-talk), and emotional arousal (e.g., test anxiety, building rapport). The faculty then chose and implemented strategies in each of the four areas in one of their engineering courses. Monthly meetings of the FLC during implementation allowed faculty to share their experiences and suggestions for refinements in their teaching strategy. The paper examines the faculty member choice (why they chose to use particular strategies in their course) as well as their reflections on how well the strategy worked (impact on student learning vs ease of implementation). In addition, the paper examines in-class observations and student survey responses to determine if they felt a particular strategy was useful. The research seeks to identify strategies that faculty members chose and are viewed as effective by both the faculty and students. The presentation will seek additional feedback from the wider community on the effectiveness of teaching strategies to improve self-efficacy and future work will include the analysis of additional surveys that were administered to measure student self-efficacy with the goal of determining simple and effective strategies that can be implemented in engineering classrooms. 
    more » « less
  5. This research explores the barriers, concerns, and obstacles undergraduate STEM educators face when implementing high-impact teaching practices (HIPs), the application of which may improve student learning outcomes. Because our study took place during the COVID-19 pandemic, our results also shed light on the unique challenges of utilizing HIPs in asynchronous online-learning environments. Thirteen undergraduate instructors were interviewed about their current teaching practices in order to identify barriers to or support for adopting HIPs. Data collected through semi-structured interviews revealed administrative and financial restraints as barriers to effective teaching which have been found in previous research. A number of new and unique obstacles emerged out of teaching remotely or online during the pandemic, including a heightened concern over the instructor’s ability to connect with students and engage in the best teaching practices. This research extends our current understanding of barriers and concerns about adopting HIPs in undergraduate STEM courses because of the unique perceived threats that emerged during the pandemic. We identify strategies to equip faculty with the support they need to provide equitable learning experiences, including access to consultants who support curriculum development and implementation in the classroom, ongoing educational coaching, and increased access to professional-development opportunities and a community of inquiry to discuss teaching strategies. 
    more » « less