skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chirality Unbound in Graphene Nanoribbons
Abstract In this manuscript, we report the first demonstration of controlled helicity in extended graphene nanoribbons (GNRs). We present a wealth of new graphene nanoribbons that are a direct consequence of the high‐yielding and robust synthetic method revealed in this study. We created a series of defect‐free, ultralong, chiral cove‐edged graphene nanoribbons where helical twisting of the graphene nanoribbon backbone is tuned through functionalization with chiral side chains.S‐configured point chiral centers in the side chains transfer their chiral information to induce a helically chiral, right‐handed twist in the graphene nanoribbon. As the backbone is extended, these helically twisted graphene nanoribbons exhibit a substantial increase in their circular dichroic response. The longest variant synthesized consists of an average of 268 linearly fused rings, reaching 65 nm in average length with nearly 10 full end‐to‐end helical rotations. The structure exhibits an extraordinary |Δε| value of 6780 M−1cm−1at 550 nm—the highest recorded for an organic molecule in the visible wavelength range. This new chiroptic material acts as room‐temperature spin filters in thin films due to its chirality‐induced spin selectivity.  more » « less
Award ID(s):
2115625
PAR ID:
10625957
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report poly(isocyanide)-based random copolymers (co-PIC) featuring alkoxycarbonyl-based side-chains synthesized via the metal-catalyzed controlled polymerization of chiral and achiral isocyanide monomers. The pyridine-functionalized achiral monomer provides functional sites while the chiral monomer drives the formation of a one-handed preferred helix. The side-chain functionalized helical polymer undergoes self-assembly with palladated pincer ligands, as evidenced by 1H NMR and UV-Vis spectroscopies. Circular dichroism (CD) spectroscopy confirms that the side-chain self-assembly does not affect the backbone helicity. We construct supramolecular helical brush copolymers via the metal coordination of the co-PIC backbone with telechelic poly(styrene)s. 1H NMR and UV-Vis spectroscopies confirm the metal coordination, and CD measurements suggest that the backbone retains its helical conformation. Additionally, viscometry measurements verify the formation of high molecular weight polymers while dynamic light scattering confirms the increasing hydrodynamic radii of the resulting supramolecular brush copolymers. Our methodology constructs complex 3D materials with fully synthetic, secondary structure containing building blocks. We view this as a platform for building architecturally controlled 3D supramolecular materials with high degrees of complexity. 
    more » « less
  2. Chemical vapor deposition of CH 4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 μS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies. 
    more » « less
  3. The synthesis of functional graphene nanostructures on Ge(001) provides an attractive route toward integrating graphene-based electronic devices onto complementary metal oxide semiconductor-compatible platforms. In this study, we leverage the phenomenon of the anisotropic growth of graphene nanoribbons from rationally placed graphene nanoseeds and their rotational self-alignment during chemical vapor deposition to synthesize mesoscale graphene nanomeshes over areas spanning several hundred square micrometers. Lithographically patterned nanoseeds are defined on a Ge(001) surface at pitches ranging from 50 to 100 nm, which serve as starting sites for subsequent nanoribbon growth. Rotational self-alignment of the nanoseeds followed by anisotropic growth kinetics causes the resulting nanoribbons to be oriented along each of the equivalent, orthogonal Ge⟨110⟩ directions with equal probability. As the nanoribbons grow, they fuse, creating a continuous nanomesh. In contrast to nanomesh synthesis via top-down approaches, this technique yields nanomeshes with atomically faceted edges and covalently bonded junctions, which are important for maximizing charge transport properties. Additionally, we simulate the electrical characteristics of nanomeshes synthesized from different initial nanoseed-sizes, size-polydispersities, pitches, and device channel lengths to identify a parameter-space for acceptable on/off ratios and on-conductance in semiconductor electronics. The simulations show that decreasing seed diameter and pitch are critical to increasing nanomesh on/off ratio and on-conductance, respectively. With further refinements in lithography, nanomeshes obtained via seeded synthesis and anisotropic growth are likely to have superior electronic properties with tremendous potential in a multitude of applications, such as radio frequency communications, sensing, thin-film electronics, and plasmonics. 
    more » « less
  4. Abstract Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials1–4. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions5,6. However, the exact nature and magnitude of these couplings have remained unknown so far. Here we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic. We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the dipolar and magnetic orders of the material with a suite of ultrafast optical probes. Our data show a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further show that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin–orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable unique functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds. 
    more » « less
  5. Abstract Self-assembly of small molecules in water provides a powerful route to nanostructures with pristine molecular organization and small dimensions (<10 nm). Such assemblies represent emerging high surface area nanomaterials, customizable for biomedical and energy applications. However, to exploit self-assembly, the constituent molecules must be sufficiently amphiphilic and satisfy prescribed packing criteria, dramatically limiting the range of surface chemistries achievable. Here, we design supramolecular nanoribbons that contain: (1) inert and stable internal domains, and (2) sacrificial surface groups that are thermally labile, and we demonstrate complete thermal decomposition of the nanoribbon surfaces. After heating, the remainder of each constituent molecule is kinetically trapped, nanoribbon morphology and internal organization are maintained, and the nanoribbons are fully hydrophobic. This approach represents a pathway to form nanostructures that circumvent amphiphilicity and packing parameter constraints and generates structures that are not achievable by self-assembly alone, nor top-down approaches, broadening the utility of molecular nanomaterials for new targets. 
    more » « less