The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer’s disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.
more »
« less
This content will become publicly available on March 11, 2026
Deep learning to quantify the pace of brain aging in relation to neurocognitive changes
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age.
more »
« less
- Award ID(s):
- 1936775
- PAR ID:
- 10626299
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 10
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Today’s generative models can synthesize magnetic resonance images (MRIs) of the brain at specific ages. However, such models can neither map the aging process longitudinally within subjects, nor accommodate its variability across subjects. Such approaches also cannot predict anatomic features of aging in ways that can be validated retrospectively or trusted prospectively. We introduce a three-dimensional hybrid ControlNet + diffusion model that uses the baseline T1-weighted MRIs of healthy adults to predict individual neuroanatomic aging trajectories, as reflected by follow-up MRIs. The approach captures individual anatomical changes with an average predicted voxelwise intensity error of 15% and structural similarity index of 93%. Unlike methods relying on qualitative validation, our approach quantifies the fidelity of prospective MRI synthesis using FreeSurfer volumetrics. Because brain atrophy reflects risk for Alzheimer’s disease (AD), our model’s ability to generate individual-specific prospective MRIs suggests its clinical potential to assist AD risk estimation.more » « less
-
Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30 of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed . Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum , cerebellum , and putamen , with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area , orbitofrontal cortex, brainstem, and posterior cingulate cortex ). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article.more » « less
-
Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum.more » « less
-
Alzheimer’s disease has a prolonged asymptomatic phase during which pathological changes accumulate before clinical symptoms emerge. This study aimed to stratify the risk of clinical disease to inform future disease-modifying treatments. Cerebrospinal fluid analysis from participants in the Emory Healthy Brain Study was used to classify individuals based on amyloid beta 42 (Aβ42), total tau (tTau) and phosphorylated tau (pTau) levels. Cognitively normal (CN), biomarker-positive (CN)/BM+individuals were identified using a tTau: Aβ42 ratio > 0.24, determined by Gaussian mixture models. CN/BM+ individuals (n = 134) were classified as having asymptomatic Alzheimer’s disease (AsymAD), while CN, biomarker-negative (CN/BM−) individuals served as controls (n = 134). Cognitively symptomatic, biomarker-positive individuals with an Alzheimer’s disease diagnosis confirmed by the Emory Cognitive Neurology Clinic were labelled as Alzheimer’s disease (n = 134). Study groups were matched for age, sex, race and education. Cerebrospinal fluid samples from these matched Emory Healthy Brain Study groups were analysed using targeted proteomics via selected reaction monitoring mass spectrometry. The targeted cerebrospinal fluid panel included 75 peptides from 58 unique proteins. Machine learning approaches identified a subset of eight peptides (ADQDTIR, AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR, VVSSIEQK, YDNSLK) that distinguished between CN/BM− and symptomatic Alzheimer’s disease samples with a binary classifier area under the curve performance of 0.98. Using these eight peptides, Emory Healthy Brain Study AsymAD cases were further stratified into ‘Control-like’ and ‘Alzheimer’s disease-like’ subgroups, representing varying levels of risk for developing clinical disease. The eight peptides were evaluated in an independent dataset from the Alzheimer’s Disease Neuroimaging Initiative, effectively distinguishing CN/BM− from symptomatic Alzheimer’s disease cases (area under the curve = 0.89) and stratifying AsymAD individuals into control-like and Alzheimer’s disease-like subgroups (area under the curve = 0.89). In the absence of matched longitudinal data, an established cross-sectional event-based disease progression model was employed to assess the generalizability of these peptides for risk stratification. In summary, results from two independent modelling methods and datasets demonstrate that the identified eight peptides effectively stratify the risk of progression from asymptomatic to symptomatic Alzheimer’s disease.more » « less
An official website of the United States government
