skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differentiating Ligand Tailoring and Cation Incorporation as Strategies for Tuning Heterobimetallic Cerium Complexes
Abstract Tuning of redox‐active complexes featuring metals with high coordination numbers by incorporation of secondary redox‐inactive cations has received far less attention than it deserves. Here, appending moderate steric bulk to a tripodal ligand framework has been tested for its influence on secondary‐cation‐driven structural and electrochemical tuning of cerium, a lanthanide that tends to adopt high coordination numbers. Aquasi‐C3‐symmetric cerium(III) complex denoted[Ce]has been prepared that features pendant benzyloxy groups, and this work demonstrates that this species offers a site capable of binding single Na+or Ca2+ions. Electrochemical and UV‐visible spectroscopic studies reveal equilibrium binding affinity of[Ce]for Na+in acetonitrile solvent, contrasting with tight binding of all cations in all other previously studied systems of this type. The modulated cation binding can be attributed to the bulky benzyloxy groups, which impact the thermodynamics of cation binding but do not impede the formation of cerium centers with coordination number 8 upon binding of either Na+or Ca2+. The Ce(IV/III) reduction potential was found to be tunable under the equilibrium binding conditions, highlighting the potentially significant role that controlled structural changes can play in modulating the solution properties of heterobimetallic complexes.  more » « less
Award ID(s):
1922649
PAR ID:
10626346
Author(s) / Creator(s):
;
Publisher / Repository:
European Chemical Societies Publishins
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
31
Issue:
32
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed. 
    more » « less
  2. Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III). 
    more » « less
  3. Abstract The two‐fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene,1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C−C bond converts the central eight‐membered ring into a twisted core with two fused five‐membered rings. This C−C bond of 1.589(3)–1.606(6) Å falls into a single σ‐bond range and generates two perpendicular π‐surfaces with dihedral angles of 110.3(9)°–117.4(1)° in the1TR2−dianions. As a result, the highly contorted1TR2−ligand exhibits a “butterfly” shape and could provide different coordination sites for metal‐ion binding. The K‐induced reduction of1in THF affords a polymeric product with low solubility, namely [{K+(THF)}2(1TR2−)] (K2‐1TR2−). The use of a secondary ligand facilitates the isolation of discrete complexes with heavy alkali metals, [Rb+(18‐crown‐6)]2[1TR2−] (Rb2‐1TR2−) and [Cs+(18‐crown‐6)]2[1TR2−] (Cs2‐1TR2−). Both internal and external coordination are observed inK2‐1TR2−, while the bulky 18‐crown‐6 ligand only allows external metal binding inRb2‐1TR2−andCs2‐1TR2−. The reversibility of the two‐fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. Computational analysis shows that the heavier alkali metals enable effective charge transfer from the1TR2−TBCOT dianion, however, the aromaticity of the polycyclic ligand remains largely unaffected. 
    more » « less
  4. Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
    more » « less
  5. Incorporation of secondary redox-inactive cations into heterobimetallic complexes is an attractive strategy for modulation of metal-centered redox chemistry, but quantification of the consequences of incorporating strongly Lewis acidic trivalent cations has received little attention. Here, a family of seven heterobimetallic complexes that pair a redox-active nickel center with La3+, Y3+, Lu3+, Sr2+, Ca2+, K+, and Na+ (in the form of their triflate salts) have been prepared on a heteroditopic ligand platform to understand how chemical behavior varies across the comprehensive series. Structural data from X-ray diffraction analysis demonstrate that the positions adopted by the secondary cations in the crown-ether-like site of the ligand relative to nickel are dependent primarily on the secondary cations’ ionic radii and that the triflate counteranions are bound to the cations in all cases. Electrochemical data, in concert with electron paramagnetic resonance studies, show that nickel(II)/nickel(I) redox is modulated by the secondary metals; the heterogeneous electron-transfer rate is diminished for the derivatives incorporating trivalent metals, an effect that is dependent on steric crowding about the nickel metal center and that was quantified here with a topographical free-volume analysis. As related analyses carried out here on previously reported systems bear out similar relationships, we conclude that the placement and identity of both the secondary metal cations and their associated counteranions can afford unique changes in the (electro)chemical behavior of heterobimetallic species. 
    more » « less