skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite Element Model of Equal Channel Angular Extrusion of Ultra High Molecular Weight Polyethylene
Ultra-high molecular weight polyethylene (UHMWPE) used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty, has to possess superior tribological properties, high mechanical strength, and toughness. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to introduce large shear strains to achieve higher molecular entanglement and superior mechanical properties of this material. Finite element analysis (FEA) can be utilized to evaluate the influence of important manufacturing parameters such as the extrusion rate, temperature, geometry of the die, back pressure, and friction effects. In this paper we present efficient FEA models of ECAE for UHMWPE. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. Three considered material models (J2-plasticity, Bergstrom-Boyce, and the Three Network Model) predict different extrusion loads, deformed shapes and accumulated shear strain distributions. The work has also shown that the friction coefficient significantly influences the punch force and that the 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel. Additionally, a sharp corner in the die can lead to the formation of the so-called “dead zone” due to a portion of the material lodging into the corner and separating from the billet. Our study shows that the presence of this material in the corner substantially affects the extrusion force and the resulting distribution of accumulated shear strain within the billet  more » « less
Award ID(s):
1757371
PAR ID:
10250285
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
ISSN:
1087-1357
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ultra high molecular weight polyethylene (UHMWPE) is widely used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to achieve higher molec ular entanglement and superior mechanical properties of this material. Numerical modeling can be utilized to evaluate the influence of such important manufacturing parameters as the extrusion rate, temperature, geometry of the die, back pressure and fricti on effects in the ECAE of polyethylenes. In this paper we focus on the development of efficient FE models of ECAE for UHMWPE. We study the applicability of the available constitutive models traditionally used in polymer mechanics for UHMWPE, evaluate the importance of the proper choice of the friction parameters between the billet and the die, and compare the accuracy of predictions between 2D (plane strain) and 3D models. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. It is also shown that the friction coefficient significantly influences the punch force and that 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel. 
    more » « less
  2. Reducing production scrap is vital for decarbonizing the aluminum industry. In extrusion, the greatest source of scrap stems from removing profile sections containing transverse (charge) welds that are deemed too weak for their intended purpose. However, until now, there has been no predictive transverse weld strength model. This article establishes a transverse weld strength model as a function of billet properties and extrusion parameters. It extends the film theory of solid-state welding by enhancing Cooper and Allwood’s plane strain model to consider non-plane strain deformations at the billet-billet interface. These enhancements are informed by analyzing oxide fragmentation patterns through shear lag modeling and microscopy of profiles extruded from anodized billets. Model predictions are assessed through shear tests on welds from single and two-piece billets, extruded into rod, bar, and multi-hollow profiles. The experiments reveal that negative surface expansions at the weld nose cause interface buckling and weaker welds, but both surface expansions and weld strengths increase with distance from the nose. In non-axisymmetric profiles, deformation conditions and strengths vary across, as well as along, the weld. Two-piece billet welds are longer but reach bulk strength long before weld termination. The model predicts these trends and shows that die pressures are sufficient for micro-extrusion of any exposed substrate through interface oxide cracks. This underscores the significance of interface strains in exposing substrate and determining the weld strength. The model can help increase process yields by determining minimum lengths of weak profile to scrap and aiding process optimization for increased weld strength. 
    more » « less
  3. Ultra-High Molecular Weight Polyethylene (UHMWPE) is widely used as a bearing surface in total and partial joint arthroplasty. In addition to medical applications, this polymer is utilized in the fields of ballistic protection, sports, and industrial tribology. The addition of carbon allotropes, such as nanographite or carbon black powders, to UHMWPE offers potential benefits including added conductivity, increased wear resistance, and introduction of micro-tracers for understanding microstructural behavior and monitoring damage [1]. The mechanical properties of these Carbon/UHWPE nanocomposites can be enhanced by subjecting them to equal channel angular extrusion (ECAE) as a way to introduce large shear strains to achieve higher molecular entanglement of UHMWPE and better distribution of carbon nanoparticles [2, 3]. In this paper, micro-computed tomography (µCT) is used to characterize carbon black (CB) and nanographite (N27SG) reinforced UHMWPE polymers. It is shown that the procedure described in [1] results in almost uniform distribution of carbon inclusions around UHMWPE particles with both compression molding (CM), and ECAE processes. Multiscale numerical models of the composite are developed based on the µCT images, including mesoscale finite element (FE) models of representative volume element (RVE) on the mesoscale, and micromechanical predictions for carbon-rich interphase layers on the microscale. 
    more » « less
  4. In this paper, we investigate ultra-high-molecular-weight-polyethylene (UHMWPE) doped with conductive carbon black (CCB) nanoparticles. This nanocomposite is considered a candidate for biomedical applications such as orthopedics. Micro-computed tomography (μCT) and scanning electron microscopy studies show that the composite has a complex microstructure consisting of larger particles of UHMWPE surrounded by a thin layer containing a high concentration of CCB nano inclusions. The overall mechanical properties of these composites depend on the volume fraction of CCB and the manufacturing procedures e.g., compression molding or equal channel angular extrusion. To predict the effective elastic properties of the CCB/UHMWPE nanocomposite, we propose a multiscale modeling framework based on a combined analytical-numerical approach. μCT images are processed to extract the size, shape, and orientation distributions of UHMWPE particles as well as the volume fractions and spatial distribution of CCB containing layer. These distributions are used to develop multiscale numerical models of the composite including finite element analysis of representative volume elements on the mesoscale, and micromechanical predictions of CCB containing layer on the microscale. The predictive ability of the models is confirmed by comparison with the experimental measurements obtained by dynamic mechanical analysis. 
    more » « less
  5. Abstract The supply chains of extruded aluminum are materially inefficient, with up to two-fifths of the billet being scrapped before the profile is incorporated into a final product. A significant source of process scrap arises from removing the tongue-shaped transverse weld—also known as the front-end defect or charge weld—that is formed between the consecutive billets being extruded, primarily because of concerns over weld integrity. Optimizing process settings and die geometry can reduce the transverse weld length—and thus the amount of scrapped material—but only by approximately 15%. We investigate a novel methodology for significant scrap reduction, where an initially profiled interface—rather than a flat one—between consecutively extruded billets compensates for the differential velocities of material across the billet cross-section as it moves through the die ports, resulting in shorter welds. This profiled interface is created using profiled billets that fit into a dummy block shaped with the inverse of the billet profile. We present a design process to define the shape of the profiled dummy block and billet. For a given part, we first determine the ideal shape by obtaining the velocity field from finite element simulations of the conventional extrusion process, assuming perfectly rigid tooling and no constraints on the creation of profiled tooling or billets. Next, we rationalize this shape by applying stress and deflection limits to the dummy block, ensuring it avoids plastic deformation and interference with the container wall. Additionally, we consider ductile damage limits for the billet to prevent cracking during a pre-extrusion hot forging stage, which is one method of generating profiled billets. The design process is applied to four profiles of increasing complexity: solid round and rectangular bars, a square-tube hollow, and a complex multi-hollow profile. Extrusion and forging trials using custom-built tooling are conducted to validate the design process. The experimental case studies demonstrate that profiled dummy blocks and billets can achieve weld length reductions of over 50% and that the same tooling can offer scrap savings across a range of similar extruded shapes. In the tests, a profiled dummy block with an air escape vent showed zero-to-negligible plastic deformation and neither air entrapment nor clogging of the vent during extrusion, while a conventional billet was hot-forged to produce profiled ends without cracking or deforming the forging tools. Overall, this study highlights that profiled billet extrusion is a promising technology for significantly reducing scrap from transverse weld removal in aluminum extrusions. 
    more » « less