skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 12, 2026

Title: Schistosomiasis and water resources development in Africa: A scoping review and multi-case evaluation of associated snail control
BackgroundWater resources development (WRD), specifically infrastructural man-made water bodies such as dams and irrigation schemes, are built to improve water supply, provide energy, and enhance food security. However, dams and irrigation schemes may lead to a dramatic increase in the prevalence of schistosomiasis. Methodology/Principal findingsWe conducted a scoping review of WRD impacts on schistosomiasis transmission risk in Africa using electronic databases including Scopus, Web of Science, and grey literature. From 1483 retrieved records, we assessed 186 full-text papers and identified 122 articles covering 54 dams and irrigation schemes in 32 African countries. We found that, although the relationship between WRD and schistosomiasis transmission risk is well-documented in the scientific literature, the vast majority of the approximately 1,600 medium- to large-sized dams currently operating in endemic regions of Africa lack before-and-after prevalence data necessary to evaluate their actual impact on schistosomiasis transmission. Our analysis revealed that rigorous epidemiological data to assess WRD’s effects exist for only 11 dams across 9 countries. Additionally, only a limited number of studies provided information on schistosomiasis control methods, surveillance, or monitoring for WRD. Few countries have implemented engineering and biological snail control measures, some of which have proven effective, enabling us to identify successful interventions employed at various stages of the WRD lifecycle. Lastly, to assess these measures in detail, we selected case studies from Africa that illustrate the success and challenges of schistosomiasis control with regard to WRD, thus gaining insights of the global relevance of lessons learnt for the future development of water resources. Conclusions/SignificanceOur analysis highlighted that an integrated and coordinated approach is vital for the successful control of schistosomiasis transmission risk associated with Water Resources Development. We provide key recommendations which could be adopted by the Continental Africa Water Investment Programme (AIP) with the ultimate goal of decreasing prevalence and moving towards elimination.  more » « less
Award ID(s):
2011179 2024383
PAR ID:
10626608
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Horstick, Olaf
Publisher / Repository:
public library of science
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
19
Issue:
6
ISSN:
1935-2735
Page Range / eLocation ID:
e0013180
Subject(s) / Keyword(s):
INTERMEDIATE HOSTIRRIGATION SYSTEMBULINUS-TRUNCATUSHAEMATOBIUMSENEGALEGYPTDAMSCONSTRUCTIONPREVALENCE
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mireji, Paul O (Ed.)
    BackgroundSchistosomiasis, a chronic parasitic disease, remains a public health issue in tropical and subtropical regions, especially in low and moderate-income countries lacking assured access to safe water and proper sanitation. A national prevalence survey carried out by the Brazilian Ministry of Health from 2011 to 2015 found a decrease in human infection rates to 1%, with 19 out of 26 states still classified as endemic areas. There is a risk of schistosomiasis reemerging as a public health concern in low-endemic regions. This study proposes an integrated landscape-based approach to aid surveillance and control strategies for schistosomiasis in low-endemic areas. Methodology/Principal findingsIn the Middle Paranapanema river basin, specific landscapes linked to schistosomiasis were identified using a comprehensive methodology. This approach merged remote sensing, environmental, socioeconomic, epidemiological, and malacological data. A team of experts identified ten distinct landscape categories associated with varying levels of schistosomiasis transmission potential. These categories were used to train a supervised classification machine learning algorithm, resulting in a 92.5% overall accuracy and a 6.5% classification error. Evaluation revealed that 74.6% of collected snails from water collections in five key municipalities within the basin belonged to landscape types with higher potential forS. mansoniinfection. Landscape connectivity metrics were also analysed. Conclusions/SignificanceThis study highlights the role of integrated landscape-based analyses in informing strategies for eliminating schistosomiasis. The methodology has produced new schistosomiasis risk maps covering the entire basin. The region’s low endemicity can be partly explained by the limited connectivity among grouped landscape-units more prone to triggering schistosomiasis transmission. Nevertheless, changes in social, economic, and environmental landscapes, especially those linked to the rising pace of incomplete urbanization processes in the region, have the potential to increase risk of schistosomiasis transmission. This study will help target interventions to bring the region closer to schistosomiasis elimination. 
    more » « less
  2. Schistosomiasis is a debilitating parasitic disease of poverty that affects more than 200 million people worldwide, mostly in sub-Saharan Africa, and is clearly associated with the construction of dams and water resource management infrastructure in tropical and subtropical areas. Changes to hydrology and salinity linked to water infrastructure development may create conditions favorable to the aquatic vegetation that is suitable habitat for the intermediate snail hosts of schistosome parasites. With thousands of small and large water reservoirs, irrigation canals, and dams developed or under construction in Africa, it is crucial to accurately assess the spatial distribution of high-risk environments that are habitat for freshwater snail intermediate hosts of schistosomiasis in rapidly changing ecosystems. Yet, standard techniques for monitoring snails are labor-intensive, time-consuming, and provide information limited to the small areas that can be manually sampled. Consequently, in low-income countries where schistosomiasis control is most needed, there are formidable challenges to identifying potential transmission hotspots for targeted medical and environmental interventions. In this study, we developed a new framework to map the spatial distribution of suitable snail habitat across large spatial scales in the Senegal River Basin by integrating satellite data, high-definition, low-cost drone imagery, and an artificial intelligence (AI)-powered computer vision technique called semantic segmentation. A deep learning model (U-Net) was built to automatically analyze high-resolution satellite imagery to produce segmentation maps of aquatic vegetation, with a fast and robust generalized prediction that proved more accurate than a more commonly used random forest approach. Accurate and up-to-date knowledge of areas at highest risk for disease transmission can increase the effectiveness of control interventions by targeting habitat of disease-carrying snails. With the deployment of this new framework, local governments or health actors might better target environmental interventions to where and when they are most needed in an integrated effort to reach the goal of schistosomiasis elimination. 
    more » « less
  3. The development of water management infrastructures, such as dams and canals, are important components of society’s response to feed a growing human population and to fight climate change. Yet, these changes in land use can also increase the transmission risk for waterborne diseases. Transmission risk associated with artificial reservoirs has been extensively documented for schistosomiasis, a parasitic disease of poverty that infects more than 240 million people worldwide. Over 90% of these cases are in sub-Saharan Africa, a region that is being steadily reshaped by climate change. Controlling the parasite’s obligate intermediate host snail is key to reducing transmission of this disease. Using commercial aquaculture to farm marketable species which predate upon these snails in vulnerable regions can have multiple positive effects, including the improved socioeconomic and nutritional health of surrounding communities. Here the authors assessed the viability of using the aquaculture of snail predators to simultaneously control schistosomiasis infection rates while alleviating economic and/or nutritional poverty in endemic regions of sub-Saharan Africa. A PRISMA-based 6-step systematic methodology was used to explore the primary literature using the case study of Côte d’Ivoire and two native species of snail predator to make evidence-based conclusions on the viability of this method for controlling schistosomiasis. This detailed thematic examination of the literature concluded that using specific approaches and species, aquaculture could be effective in reducing economic poverty and chronic malnourishment along with high levels of schistosomiasis infection. More current species-specific aquaculture data and consumer survey data are, however, needed to determine the economic and logistical effectiveness of farming native snail predators in-country. These and other opportunities for future research are highlighted. 
    more » « less
  4. None (Ed.)
    The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1–27.3°C and 23.6–27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum. 
    more » « less
  5. Coffeng, Luc E (Ed.)
    The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages ofS.mansoniandS.haematobiumand their obligate host snails, i.e.,Biomphalariaspp. andBulinusspp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission ofS.mansoniandS.haematobiumrange between 23.1–27.3°C and 23.6–27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum. 
    more » « less