skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 28, 2026

Title: Shockingly Effective: Cluster Winds as Engines of Feedback in Starburst Galaxy VV 114
Abstract We present high-resolution Keck Cosmic Web Imager and MUSE integral field unit spectroscopy of VV 114, a local IR-luminous merger undergoing a vigorous starburst and showing evidence of galactic-scale feedback. The high-resolution data allow for spectral deblending of the optical emission lines and reveal a broad emission line component (σbroad ∼ 100–300 km s−1) with line ratios and kinematics consistent with a mixture of ionization by stars and radiative shocks. The shock fraction (percentage of ionization due to shocks) in the high-velocity gas is anticorrelated with the projected surface number density of resolved star clusters, and we find that the radial density profiles around clusters are fit well by models of adiabatically expanding cluster winds driven by massive stellar winds and supernovae (SNe). The total kinetic power estimated from the cluster wind models matches the wind + SN mechanical energy deposition rate estimated from the soft-band X-ray luminosity, indicating that at least 70% of the shock luminosity in the galaxy is driven by the star clusters. Hubble Space Telescope narrowband near-IR imaging reveals embedded shocks in the dust-buried IR nucleus of VV 114E. Most of the shocked gas is blueshifted with respect to the quiescent medium, and there is a close spatial correspondence between the shock map and the Chandra soft-band X-ray image, implying the presence of a galactic superwind. The energy budget of the superwind is in close agreement with the total kinetic power of the cluster winds, confirming the superwind is driven by the starburst.  more » « less
Award ID(s):
2239807 2009416
PAR ID:
10626642
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
988
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts. 
    more » « less
  2. ABSTRACT We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∼5 × 104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O iii] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two apec thermal populations (∼0.80 and ∼0.10 keV). We find a bubble age >2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with $$P_{\textrm {kin}}/L_{\textrm {bol}}\sim 0.8~{{\ \rm per\ cent}}$$, which may be overestimated given the recent Lbol variation. [O iii] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∼780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system. 
    more » « less
  3. Abstract The Tarantula Nebula (30 Doradus, 30 Dor) is the most important star-forming complex in the Local Group, offering a microscope on starburst astrophysics. At its heart lies the exceptionally rich young stellar cluster R136, containing the most massive stars known. Stellar winds and supernovae have carved 30 Dor into an amazing display of arcs, pillars, and bubbles. We present first results and advanced data-processing products from the 2 Ms Chandra X-ray Visionary Project, “The Tarantula—Revealed by X-rays” (T-ReX). The 3615 point sources in the T-ReX catalog include massive stars, compact objects, binaries, bright pre-main-sequence stars, and compact young stellar (sub)clusters in 30 Dor. After removing point sources and excluding the exceptionally bright supernova remnant N157B (30 Dor B), the global diffuse X-ray maps reveal hot plasma structures resolved at 1–10 pc scales, with an absorption-corrected total-band (0.5–7 keV) X-ray luminosity of 2.110 × 1037erg s−1. Spatially resolved spectral modeling provides evidence for emission lines enhanced by charge-exchange processes at the interfaces. We identify a candidate for the oldest X-ray pulsar detected to date in 30 Dor, PSR J0538-6902, inside a newly resolved arcuate X-ray wind nebula, the Manta Ray. The long temporal baseline of T-ReX allowed monitoring of dozens of massive stars, several showing periodic variability tied to binary orbital periods, and captured strong flares from at least three low-mass Galactic foreground stars. 
    more » « less
  4. Abstract The Ovi1032, 1038 Å line is a key probe of cooling gas in the circumgalactic medium (CGM) of galaxies but has been observed to date primarily in absorption along single sight lines. We present deep Hubble Space Telescope (HST) Solar Blind Channel of the Advanced Camera for Surveys observations of the compact, massive starburst Makani. Makani hosts a 100 kpc, [Oii]-emitting galactic wind driven by two episodes of star formation over 400 Myr. We detect Oviand Lyαemission across the [Oii] nebula with similar morphology and extent, out tor≈ 50 kpc. Using differential narrowband imaging, we separate Lyαand Oviand show that the Oviemission is comparable in brightness to [Oii], withLO VI= 4 × 1042erg s−1. The similar hourglass morphology and size of [Oii] and Oviimplicate radiative cooling atT= 105.5K in a hot–cold interface. This may occur as theT> 107K CGM—or the hot fluid driving the wind—exchanges mass with theT≈ 104K clouds entrained in (or formed by) the wind. The optical/UV line ratios may be consistent with shock ionization, although uncertain attenuation and Lyαradiative transfer complicate the interpretation. The detection of Oviin Makani lies at the bleeding edge of the UV imaging capabilities of HST and provides a benchmark for future emission-line imaging of the CGM with a wide-area UV telescope. 
    more » « less
  5. Abstract Mass-loss influences stellar evolution, especially for massive stars with strong winds. Stellar wind bow shock nebulae driven by Galactic OB stars can be used to measure mass-loss rates ( M ̇ ). The standoff distance (R0) between the star and the bow shock is set by momentum flux balance between the stellar wind and the surrounding interstellar medium (ISM). We created the Milky Way Project: mass-loss rates for OB Stars driving infrared bow shocks (MOBStIRS) using the online Zooniverse citizen science platform. We enlisted several hundred students to measureR0and two other projected shape parameters for 764 cataloged infrared bow shocks. MOBStIRS incorporated 1528 JPEG cutout images produced from Spitzer GLIMPSE and MIPSGAL survey data. Measurements were aggregated to compute shape parameters for each bow shock image deemed high quality by participants. The average statistical uncertainty onR0is 12.5% but varies from <5% to ∼40% among individual bow shocks, contributing significantly to the total error budget of M ̇ . The derived nebular morphologies agree well with (magneto) hydrodynamic simulations of bow shocks driven by the winds of OB stars moving atVa = 10–40 km s−1with respect to the ambient ISM. A systematic correction toR0to account for viewing angle appears unnecessary for computing M ̇ . Slightly more than half of MOBStIRS bow shocks are asymmetric, which could indicate anisotropic stellar winds, ISM clumping on sub-pc scales, time-dependent instabilities, and/or misalignments between the local ISM magnetic field and the star-bow-shock axis. 
    more » « less