A body that violates Kirchhoff’s law of thermal radiation exhibits an inequality in its spectral directional absorptivity and emissivity. Achieving such an inequality is of fundamental interest as well as a prerequisite for achieving thermodynamic limits in photonic energy conversion1and radiative cooling2. Thus far, inequalities in the spectral directional emissivity and absorptivity have been limited to narrow spectral resonances3, or wavelengths well beyond the infrared regime4. Bridging the gap from basic demonstrations to practical applications requires control over a broad spectral range of the unequal spectral directional absorptivity and emissivity. In this work, we demonstrate broadband nonreciprocal thermal emissivity and absorptivity by measuring the thermal emissivity and absorptivity of gradient epsilon-near-zero InAs layers of subwavelength thicknesses (50 nm and 150 nm) with an external magnetic field. The effect occurs in a spectral range (12.5–16 μm) that overlaps with the infrared transparency window and is observed at moderate (1 T) magnetic fields.
more »
« less
Observation of Strong Nonreciprocal Thermal Emission
The Kirchhoff’s law of thermal radiation stating the equivalence of emissivity and absorptivity at the same wavelength, angle, and polarization, has completely constrained emission and absorption processes. Achieving strong nonreciprocal emission points to fundamental advances for applications such as energy harvesting, heat transfer, and sensing, but strong nonreciprocal thermal emission has not been experimentally realized. Here, we observe strong nonreciprocal thermal emission using a custom-designed angle-resolved magnetic thermal emission spectroscopy and an epitaxially-transferred gradient-doped metamaterial. We show that under magnetic field, the metamaterial strongly breaks the Kirchhoff’s law, with a difference between emissivity and absorptivity at the same wavelength and angle reaching as high as 0.43. Significant nonreciprocal emission persists over broad spectral and angular ranges. The demonstration of strong nonreciprocal thermal emission and the approach can be useful for systematic exploration of nonreciprocal thermal photonics for thermal management, infrared camouflage, and energy conversion.
more »
« less
- Award ID(s):
- 2238927
- PAR ID:
- 10626678
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 135
- Issue:
- 1
- ISSN:
- 0031-9007
- Page Range / eLocation ID:
- 016901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advancements in nonreciprocal thermal emitters challenge the conventional Kirchhoff's law, which states that emissivity and absorptivity should be equal for a given direction, frequency, and polarization. These emitters can break Kirchhoff's law and enable unprecedented thermal photon control capabilities. However, current studies mainly focus on increasing the magnitude of the contrast between emissivity and absorptivity, with little attention paid to how the sign or bandwidth of the contrast may be controlled. In this work, we show such control ability can be achieved by coupling resonances that can provide opposite contrasts between emissivity and absorptivity.more » « less
-
The reciprocity between thermal emission and absorption in materials that satisfy the Lorentz reciprocity places a fundamental constraint on photonic energy conversion and thermal management. For approaching the ultimate thermodynamic limits in various photonic energy conversions and achieving nonreciprocal radiative thermal management, broadband nonreciprocal thermal emission is desired. However, existing designs of nonreciprocal emitters are narrowband. Here, we introduce a gradient epsilon-near-zero magneto-optical metamaterial for achieving broadband nonreciprocal thermal emission. We start by analyzing the nonreciprocal thermal emission and absorption in a thin layer of epsilon-near-zero magneto-optical material atop a substrate. We use temporal coupled-mode theory to elucidate the mechanism of nonreciprocal emission in the thin-film emitter. We then introduce a general approach for achieving broadband nonreciprocal emission by using a gradient epsilon-near-zero magnetooptical metamaterial. We numerically demonstrate broadband nonreciprocal emission in gradient-doped semiconductor multilayer, as well as in a magnetic Weyl semimetal multilayer with gradient chemical potential. Our approach for achieving broadband nonreciprocal emitters is useful for developing broadband nonreciprocal devices for energy conversion and thermal management.more » « less
-
Nonreciprocal thermal emission is a cutting-edge technology that enables fundamental control over thermal radiation and has exciting applications in thermal energy harvesting. However, thus far one of the foremost challenges is making nonreciprocal emission operate over a broad wavelength range and for multiple angles. In this work, we solve this outstanding problem by proposing three different types of structures that always utilize only one Weyl semimetal (WSM) thin film combined with one or two additional dielectric or metallic layers and terminated by a metallic substrate. First, a tradeoff relationship between the magnitude and bandwidth of the thermal nonreciprocity contrast is established based on the thickness of the WSM film. Then, the bandwidth broadening effect is demonstrated via the insertion of a dielectric spacer layer that can also be fine-tuned by varying its thickness. Finally, further control on the resulting strong nonreciprocal thermal radiation is demonstrated by the addition of a thin metallic layer in the proposed few layer designs. The presented composite structures work for a broad frequency range and for multiple emission angles, resulting in highly advantageous properties for various nonreciprocal thermal radiation applications. Moreover, the proposed designs do not require any patterning and can be experimentally realized by simple deposition fabrication methods. They are expected to aid in the creation of broadband nonreciprocal thermal emitters that can find applications in new energy harvesting devices.more » « less
-
null (Ed.)Abstract Spectrally selective solar absorbers (SSAs), which harvest heat from sunlight, are the key to concentrated solar thermal systems. An ideal SSA must have an absorptivity of unity in the solar irradiance wavelength region (0.3–2.5 $$\upmu $$ μ m), and its infrared thermal emissivity must be zero to depress spontaneous blackbody irradiation (2.5–25 $$\upmu $$ μ m). Current SSA designs which utilize photonic crystals, metamaterials, or cermets are either cost-inefficient due to the complexity of the required nanofabrication methods, or have limited applicability due to poor thermal stability at high temperatures. We conceptually present blackbody-cavity solar absorber designs with nearly ideal spectrally selective properties, capable of being manufactured at scale. The theoretical analyses show that the unity solar absorptivity of the blackbody cavity and nearly zero infrared emissivity of the SSA’s outer surface allow for a stagnation temperature of 880 $$^\circ $$ ∘ C under 10 suns. The performance surpasses state-of-the-art SSAs manufactured using nanofabrication methods. This design relies only on traditional fabrication methods, such as machining, casting, and polishing. This makes it suitable for large-scale industrial applications, and the “blackbody cavity” feature enables easy integration with existing concentrated solar thermal systems using the parabolic reflector and Fresnel lens as optical concentrators.more » « less
An official website of the United States government

