We present a case-study of using Ethnographic Experiential Futures (EXF) to surface underlying divergences, tensions and dilemmas implicit in views of the futures of ”social agents” among professional researchers familiar with the state of the art. Based on expert interviews, we designed three ”letters from the future,” research probes that were mailed to 15 participants working in the field, to encounter and respond to. We lay out the elements and design choices that shaped these probes, present our remote and asynchronous study design, and discuss lessons learned about the use of EXF. We find that this form of hybrid design/futures intervention has the potential to provide professional communities with opportunities to grapple with potential ethical dilemmas early on. However, the knowledge and tools for doing so are still in the making. Our contribution is a step towards advancing the potential benefits of experiential futures for technology designers and researchers.
more »
« less
This content will become publicly available on April 1, 2026
Six-decade research bias towards fancy and familiar bird species
Human implicit biases towards visually appealing and familiar stimuli are well documented and rooted in our brains’ reward systems. For example, humans are drawn to charismatic, familiar organisms, but less is known about whether such biases permeate research choices among biologists, who strive for objectivity. The factors driving research effort, such as aesthetics, logistics and species’ names, are poorly understood. We report that, from 1965 to 2020, nearly half of the variation in publication trends among 293 North American male passerine and near-passerine birds was explained by three factors subject to human bias: aesthetic salience (visual appeal), range size (familiarity) and the number of universities within ranges (accessibility). We also demonstrate that endangered birds and birds featured on journal covers had higher aesthetic salience, and birds with eponymous names were studied about half as much as those not named after humans. Thus, ornithological knowledge, and decisions based thereon, is heavily skewed towards fancy, familiar species. This knowledge disparity feeds a cycle of public interest, environmental policy, conservation, funding opportunities and scientific narratives, shrouding potentially important information in the proverbial plumage of drab, distant, disregarded species. The unintended consequences of biologists’ choices may exacerbate organismal inequalities amid biodiversity declines and limit opportunities for scientific inquiry.
more »
« less
- Award ID(s):
- 1950636
- PAR ID:
- 10626739
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2044
- ISSN:
- 1471-2954
- Subject(s) / Keyword(s):
- bibliometric scientific knowledge animal charisma honorific common name plumage colour taxonomic bias conservation priority ornithology avian ecology, species names
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Arctic Coastal Plain is one of the most important avian breeding grounds in the world; however, many species are in decline. Arctic‐breeding birds contend with short breeding seasons, harsh climatic conditions, and now, rapidly changing, variable, and unpredictable environmental conditions caused by climate change. Additionally, those breeding in industrial areas may be impacted by human activities. It is difficult to separate the impacts of industrial development and climate change; however, long‐term datasets can help show patterns over time. We evaluated factors influencing reproductive parameters of breeding birds at Prudhoe Bay, Alaska, 2003–2019, by monitoring 1265 shorebird nests, 378 passerine nests, and 231 waterfowl nests. We found that nest survival decreased significantly nearer high‐use infrastructure for all guilds. Temporally, passerine nest survival declined across the 17 years of the study, while there was no significant evidence of change in their nest density. Shorebird nest survival did not vary significantly across years, nor did nest density. Waterfowl nest density increased over the course of the study, but we could not estimate nest survival in all years. Egg predator populations varied across time; numbers of gulls and ravens increased in the oilfields 2003–2019, while Arctic fox decreased, and jaeger numbers did not vary significantly. Long‐term datasets are rare in the Arctic, but they are crucial for understanding impacts to breeding birds from both climate change and increasing anthropogenic activities. We show that nest survival was lower for birds nesting closer to high‐use infrastructure in Arctic Alaska, which was not detected in earlier, shorter‐term studies. Additionally, we show that Lapland longspur nest survival decreased across time, in concert with continent‐wide declines in many passerine species. The urgency to understand these relationships cannot be expressed strongly enough, given change is continuing to happen and the potential impacts are large.more » « less
-
Abstract Biodiversity research has advanced by testing expectations of ecological and evolutionary hypotheses through the linking of large-scale genetic, distributional, and trait datasets. The rise of molecular systematics over the past 30 years has resulted in a wealth of DNA sequences from around the globe. Yet, advances in molecular systematics also have created taxonomic instability, as new estimates of evolutionary relationships and interpretations of species limits have required widespread scientific name changes. Taxonomic instability, colloquially “splits, lumps, and shuffles,” presents logistical challenges to large-scale biodiversity research because (1) the same species or sets of populations may be listed under different names in different data sources, or (2) the same name may apply to different sets of populations representing different taxonomic concepts. Consequently, distributional and trait data are often difficult to link directly to primary DNA sequence data without extensive and time-consuming curation. Here, we present RANT: Reconciliation of Avian NCBI Taxonomy. RANT applies taxonomic reconciliation to standardize avian taxon names in use in NCBI GenBank, a primary source of genetic data, to a widely used and regularly updated avian taxonomy: eBird/Clements. Of 14,341 avian species/subspecies names in GenBank, 11,031 directly matched an eBird/Clements; these link to more than 6 million nucleotide sequences. For the remaining unmatched avian names in GenBank, we used Avibase’s system of taxonomic concepts, taxonomic descriptions in Cornell’s Birds of the World, and DNA sequence metadata to identify corresponding eBird/Clements names. Reconciled names linked to more than 600,000 nucleotide sequences, ~9% of all avian sequences on GenBank. Nearly 10% of eBird/Clements names had nucleotide sequences listed under 2 or more GenBank names. Our taxonomic reconciliation is a first step towards rigorous and open-source curation of avian GenBank sequences and is available at GitHub, where it can be updated to correspond to future annual eBird/Clements taxonomic updates.more » « less
-
Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.more » « less
-
The 3i World Auchenorrhyncha database (http://dmitriev.speciesfile.org) is being migrated into TaxonWorks (http://taxonworks.org) and comprises nomenclatural data for all known Auchenorrhyncha taxa (leafhoppers, planthoppers, treehoppers, cicadas, spittle bugs). Of all those scientific names, 8,700 are unique genus-group names (which include valid genera and subgenera as well as their synonyms). According to the Rules of Zoological Nomenclature, a properly formed species-group name when combined with a genus-group name must agree with the latter in gender if the species-group name is or ends with a Latin or Latinized adjective or participle. This provides a double challenge for researchers describing new or citing existing taxa. For each species, the knowledge about the part of speech is essential information (nouns do not change their form when associated with different generic names). For the genus, the knowledge of the gender is essential information. Every time the species is transferred from one genus to another, its ending may need to be transformed to make a proper new scientific name (a binominal name). In modern day practice, it is important, when establishing a new name, to provide information about etymology of this name and the ways it should be used in the future publications: the grammatical gender for a genus, and the part of speech for a species. The older names often do not provide enough information about their etymology to make proper construction of scientific names. That is why in the literature, we can find numerous cases where a scientific name is not formed in conformity to the Rules of Nomenclature. An attempt was made to resolve the etymology of the generic names in Auchenorrhyncha to unify and clarify nomenclatural issues in this group of insects. In TaxonWorks, the rules of nomenclature are defined using the NOMEN onthology (https://github.com/SpeciesFileGroup/nomen).more » « less
An official website of the United States government
