skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 24, 2026

Title: On homogeneous Newton-Sobolev spaces of functions in metric measure spaces of uniformly locally controlled geometry
We study the large-scale behavior of Newton-Sobolev functions on complete, connected, proper, separable metric measure spaces equipped with a Borel measure μ with μ(X) = ∞ and 0 < μ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞). Our objective is to understand the relationship between the Dirichlet space D^(1,p)(X), defined using upper gradients, and the Newton-Sobolev space N^(1,p)(X)+ℝ, for 1 ≤ p < ∞. We show that when X is of uniformly locally p-controlled geometry, these two spaces do not coincide under a wide variety of geometric and potential theoretic conditions. We also show that when the metric measure space is the standard hyperbolic space ℍⁿ with n ≥ 2, these two spaces coincide precisely when 1 ≤ p ≤ n-1. We also provide additional characterizations of when a function in D^(1,p)(X) is in N^(1,p)(X)+ℝ in the case that the two spaces do not coincide.  more » « less
Award ID(s):
2247469
PAR ID:
10626740
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Manuscripta mathematica
Volume:
176
Issue:
54
ISSN:
0025-2611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X . 
    more » « less
  2. In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete \(p\)-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for \(p>1\). As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain \(L^p\)-Poincaré inequalities for all values of \(p \ge 1\). 
    more » « less
  3. We show that capacity can be computed with locally Lipschitz functions in locally complete and separable metric spaces. Further, we show that if ( X , d , μ<#comment/> ) (X,d,\mu ) is a locally complete and separable metric measure space, then continuous functions are dense in the Newtonian space N 1 , p ( X ) N^{1,p}(X) . Here the measure μ<#comment/> \mu is Borel and is finite and positive on all metric balls. In particular, we don’t assume properness of X X , doubling of μ<#comment/> \mu or any Poincaré inequalities. These resolve, partially or fully, questions posed by a number of authors, including J. Heinonen, A. Björn and J. Björn. In contrast to much of the past work, our results apply tolocally completespaces X X and dispenses with the frequently used regularity assumptions: doubling, properness, Poincaré inequality, Loewner property or quasiconvexity. 
    more » « less
  4. We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space \(X\) supports a \(p\)-Poincaré inequality, then the \(N^{1,p}(X)\) Sobolev space is reflexive and separable whenever \(p\in (1,\infty)\). We also prove separability of the space when \(p=1\). Our proof is based on a straightforward construction of an equivalent norm on \(N^{1,p}(X)\), \(p\in [1,\infty)\), that is uniformly convex when \(p\in (1,\infty)\). Finally, we explicitly construct a functional that is pointwise comparable to the minimal \(p\)-weak upper gradient, when \(p\in (1,\infty)\). 
    more » « less
  5. Abstract Given a Banach space X and a real number α ≥ 1, we write: (1) D ( X ) ≤ α if, for any locally finite metric space A , all finite subsets of which admit bilipschitz embeddings into X with distortions ≤ C , the space A itself admits a bilipschitz embedding into X with distortion ≤ α ⋅ C ; (2) D ( X ) = α + if, for every ϵ > 0, the condition D ( X ) ≤ α + ϵ holds, while D ( X ) ≤ α does not; (3) D ( X ) ≤ α + if D ( X ) = α + or D ( X ) ≤ α. It is known that D ( X ) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1) D ((⊕ n =1 ∞ X n ) p ) ≤ 1 + for every nested family of finite-dimensional Banach spaces { X n } n =1 ∞ and every 1 ≤ p ≤ ∞. (2) D ((⊕ n =1 ∞ ℓ ∞ n ) p ) = 1 + for 1 < p < ∞. (3) D ( X ) ≤ 4 + for every Banach space X with no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008). 
    more » « less