Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We define a type of modulus$$\operatorname {dMod}_p$$ for Lipschitz surfaces based on$$L^p$$ -integrable measurable differential forms, generalizing the vector modulus of Aikawa and Ohtsuka. We show that this modulus satisfies a homological duality theorem, where for Hölder conjugate exponents$$p, q \in (1, \infty )$$ , every relative Lipschitzk-homology classchas a unique dual Lipschitz$$(n-k)$$ -homology class$$c'$$ such that$$\operatorname {dMod}_p^{1/p}(c) \operatorname {dMod}_q^{1/q}(c') = 1$$ and the Poincaré dual ofcmaps$$c'$$ to 1. As$$\operatorname {dMod}_p$$ is larger than the classical surface modulus$$\operatorname {Mod}_p$$ , we immediately recover a more general version of the estimate$$\operatorname {Mod}_p^{1/p}(c) \operatorname {Mod}_q^{1/q}(c') \le 1$$ , which appears in works by Freedman and He and by Lohvansuu. Our theory is formulated in the general setting of Lipschitz Riemannian manifolds, though our results appear new in the smooth setting as well. We also provide a characterization of closed and exact Sobolev forms on Lipschitz manifolds based on integration over Lipschitzk-chains.more » « less
- 
            We study the large-scale behavior of Newton-Sobolev functions on complete, connected, proper, separable metric measure spaces equipped with a Borel measure μ with μ(X) = ∞ and 0 < μ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞). Our objective is to understand the relationship between the Dirichlet space D^(1,p)(X), defined using upper gradients, and the Newton-Sobolev space N^(1,p)(X)+ℝ, for 1 ≤ p < ∞. We show that when X is of uniformly locally p-controlled geometry, these two spaces do not coincide under a wide variety of geometric and potential theoretic conditions. We also show that when the metric measure space is the standard hyperbolic space ℍⁿ with n ≥ 2, these two spaces coincide precisely when 1 ≤ p ≤ n-1. We also provide additional characterizations of when a function in D^(1,p)(X) is in N^(1,p)(X)+ℝ in the case that the two spaces do not coincide.more » « lessFree, publicly-accessible full text available July 24, 2026
- 
            We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
