Abstract The evolution of the magma ocean that occupied the early Earth is influenced by the buoyancy of crystals in silicate liquid. At lower mantle pressures, silicate crystals are denser than the iso‐chemical liquid, but heavy elements like iron can cause crystals to float if they partition into the liquid phase. Crystal flotation allows for a basal magma ocean, which might explain geochemical anomalies in mantle‐derived magmas, seismic anomalies in the lower mantle, and the source of the Earth's early magnetic field. To examine whether a basal magma ocean is gravitationally stable, we investigate the degree of iron partitioning between (Mg,Fe)SiO3liquid and bridgmanite. By utilizing ab initio molecular dynamics simulations coupled with thermodynamic integration, we find that iron partitions into the liquid, and increasingly so with increasing pressure. Bridgmanite crystals are found to be buoyant at lower mantle conditions, stabilizing the basal magma ocean.
more »
« less
Petrogenesis of Erg Chech 002 Achondrite and Implications for an Altered Magma Ocean
Abstract This study conducts mineralogical and chemical investigations on the oldest achondrite, Erg Chech 002 (∼4565 million yr old). This meteorite exhibits a disequilibrium igneous texture characterized by high-Mg-number (atomic Mg/(Mg + Fe2+)) orthopyroxene xenocrysts (Mg number = 60–80) embedded in an andesitic groundmass. Our research reveals that these xenocrysts were early formed crystals, loosely accumulated or scattered in the short-period magma ocean on the parent body. Subsequently, these crystals underwent agitation due to the influx of external materials. The assimilation of these materials enriched the16O component of the magma ocean and induced a relatively reduced state. Furthermore, this process significantly cooled the magma ocean and inhibited the evaporation of alkali elements, leading to elevated concentrations of Na and K within the meteorite. Our findings suggest that the introduced materials are probably sourced from the reservoirs of CR clan meteorites, indicating extensive transport and mixing of materials within the early solar system.
more »
« less
- Award ID(s):
- 1819550
- PAR ID:
- 10626889
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 965
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recharges of magma underneath basaltic volcanoes can occur as precursory events prior to an eruption but are not always revealed in geophysical data streams or erupted lavas compositions. In contrast, phosphorus within primitive, Mg‐rich (Fo89‐90), olivine can preserve recharge information lost by the mixed melt. Evidence of rapid growth and dissolution are preserved only in phosphorus X‐ray intensity maps, which reveal that Mg‐rich olivine from eruptions occurring between 2008 and 2020 at Kīlauea Volcano (Hawaiʻi) experienced at least two episodes of magma intrusion. We develop numerical diffusion models that evaluate the fidelity of the Fe‐Mg compositional archive by quantifying three factors that influence Fo population distributions: (a) the frequency at which an Mg‐rich basaltic liquid (in equilibrium with Fo90olivine) intrudes the reservoir, (b) the pre‐existence of a polymodal distribution of olivine crystal sizes and their shapes (c) the effects of sectioning on apparent olivine core compositions. We find that most crystals lose their initial Mg‐rich composition if they are held at temperatures relevant to summit magma storage conditions (1,160–1,190°C) for more than 10 years. Thus, previous assertions that Mg‐rich olivine crystals at Kīlauea are scavenged from centuries‐old stored magmas are unrealistic. Our method permits critical evaluation of contrasting explanations of heterogeneous Fe‐Mg contents of olivine cargo: (a) different total durations of mush storage with partial diffusive erasure of compositional traits, or (b) coexistence of multiple chemically distinct magmas. Our approach provides general guidance for the conservative interpretation of temporal information preserved within olivine Fe‐Mg compositional archives.more » « less
-
Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.more » « less
-
Abstract Processes of magma generation and transportation in global mid‐ocean ridges are key to understanding lithospheric architecture at divergent plate boundaries. These magma dynamics are dependent on spreading rate and melt flux, where the SW Indian Ridge represents an end‐member. The vertical extent of ridge magmatic systems and the depth of axial magma chambers (AMCs) are greatly debated, in particular at ultraslow‐spreading ridges. Here we present detailed mineralogical studies of high‐Mg and low‐Mg basalts from a single dredge on Southwest Indian Ridge (SWIR) at 45°E. High‐Mg basalts (MgO = ∼7.1 wt.%) contain high Mg# olivine (Ol, Fo = 85–89) and high‐An plagioclase (Pl, An = 66–83) as phenocrysts, whereas low‐Mg basalts contain low‐Mg# Ol and low‐An Pl (Fo = 75–78, An = 50–62) as phenocrysts or glomerocrysts. One low‐Mg basalt also contains normally zoned Ol and Pl, the core and rim of which are compositionally similar to those in high‐Mg and low‐Mg basalts, respectively. Mineral barometers and MELTS simulation indicate that the high‐Mg melts started to crystallize at ∼32 ± 7.8 km, close to the base of the lithosphere. The low‐Mg melts may have evolved from the high‐Mg melts in an AMC at a depth of ∼13 ± 7.8 km. Such great depths of magma crystallization and the AMC are likely the result of enhanced conductive cooling at ultraslow‐spreading ridges. Combined with diffusion chronometers, the basaltic melts could have ascended from the AMC to seafloor within 2 weeks to 3 months at average rates of ∼0.002–0.01 m/s, which are the slowest reported to date among global ridge systems and may characterize mantle melt transport at the slow end of the ridge spreading spectrum.more » « less
-
Abstract Cerro Machín, a volcano located in the northern segment of the Andes, is considered one of the most dangerous volcanoes in Colombia with an explosive record that involves at least five plinian events. Prior studies focused on the last dome-building eruption have suggested the presence of a water-rich mid-crustal magma reservoir. However, no direct volatile measurements have been published and little work has been completed on the explosive products of the volcano. Here, we study the largest known eruption of Cerro Machín volcano which occurred 3600 years BP producing dacitic pyroclastic fall deposits that can be traced up to 40 km from the vent. Lapilli pumice clasts have a mineral assemblage of plagioclase, amphibole, quartz, and biotite phenocrysts, with accessory olivine, Fe–Ti oxides, and apatite. The occurrence of Fo89–92 olivine rimmed by high Mg# amphibole and the established high-water contents in the magma imply the presence of magma near or at water saturation at pressures > ~ 500 MPa. Measurements of up to 10.7 wt % H2O in melt inclusions hosted in plagioclase and quartz in the 3600 years BP eruption products support the idea that Cerro Machín is a remarkably water-rich volcanic system. Moreover, this is supported by measurements of ~103 to 161 ppm H2O in plagioclase phenocrysts. The application of two parameterizations of water partitioning between plagioclase and silicate melt allows us to use our water in plagioclase measurements to estimate equilibrium melt water contents of 5 ± 1 wt % to 11 ± 2 wt % H2O, which are in good agreement with the water contents we measured in melt inclusions. Results of amphibole geobarometry are consistent with a magma reservoir stored in the mid-to-lower crust at a modal pressure of 700 ± 250 MPa, corresponding to a depth of ~25 km. Minor crystallization in the shallow crust is also recorded by amphibole barometry and calculated entrapment pressures in melt inclusions. Amphibole is present as unzoned and zoned crystals. Two populations of unzoned amphibole crystals are present, the most abundant indicate crystallization conditions of 853 ± 26°C (1 se; standard error), and the less abundant crystallized at an average temperature of 944 ± 24°C (1 se). Approximately 18% of the amphibole crystals are normally or reversely zoned, providing evidence for a minor recharge event that could have been the trigger mechanism for the explosive eruption. Plagioclase crystals also show normal and reverse zoning. The moderate Ni concentrations (<1600 μg/g) in the high-Fo olivine xenocrysts suggest that Cerro Machín primary magmas are generated by inefficient interaction of mantle peridotite with a high-silica melt produced by slab melting of basaltic material. Some sediment input is also suggested by the high Pb/Th (>2.2) and Th/La (0.3–0.4) ratios. Whole rock chemistry reveals heavy rare earth element (HREE) depletion and Sr enrichment that likely formed during the crystallization of garnet and amphibole in the upper part of the mantle or lower portion of the crust, promoting the formation of water-rich dacitic magma that was then injected into the middle-to-lower crust. Textural and compositional differences in the crystal cargo that erupted during dome-building and plinian events support the idea that large volumes of magma recharge lead to effusive eruptions, while only small recharge events are needed to trigger plinian eruptions at Cerro Machín.more » « less
An official website of the United States government

